idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/28/2023 12:59

Microorganisms ward off parasites: Potential new function of CRISPR-Cas system discovered

Juliana Fischer Ressort Presse - Stabsstelle des Rektorats
Universität Duisburg-Essen

    Microorganisms use the CRISPR-Cas system to fight viral attacks. In genetic engineering, the microbial immune system is used for the targeted modification of the genetic make-up. Under the leadership of Professor Dr. Alexander Probst, microbiologist at the Research Center One Health Ruhr at the University of Duisburg-Essen (UDE), a research team has now discovered another function of this specialised genomic sequence: archaea – microorganisms that are often very similar to bacteria in appearance – also use them to fight parasites. The team has now published its findings in Nature Microbiology.*

    Biochemists Emmanuelle Charpentier and Jennifer Doudna received the Nobel Prize for the biotechnological application of the CRISPR-Cas systems, or ‘genetic scissors’, for genetic engineering in 2020. However, many functions of this genetic tool are still unexplored to date. Could microorganisms, for example, use them to fight off other microorganisms that live on them as parasites? With this research question in mind, Alexander Probst analysed the genetic material of microbes in the Earth’s deep crust. ‘More than 70 percent of the Earth’s microorganisms are housed in the deep biosphere. If we want to understand diversity on our planet, it is worth taking a look into the deep’, he explains.

    With his team, the microbiologist has analysed the water that a geyser in the USA spits to the surface from the depths, as well as samples from the Horonobe underground laboratory in Japan. The research team focused on archaea, which live in the ecosystem as hosts and parasites. The tiny microbes are highly similar to bacteria in cell size but have substantially different physiological properties.

    The result of their genomic analysis provided new insights: there were conspicuously few parasites in the vicinity of the hosts, and the hosts showed genetic resistance to the parasites. The researchers discovered the reason for this in the genetic scissors in the genome of the microorganisms. ‘In the course of evolution, the archaea have incorporated the parasitic DNA. If a parasite with the same DNA now attacks the organism, the foreign genetic material is probably recognised by the CRISPR system and presumably decomposed’, Probst explains. The microbiologist is an expert in the analysis of genetic material from environmental samples and uses the latest methods in his lab, such as Oxford Nanopore technology, which enables rapid and comprehensive sequencing of the material.

    In order to rule out the possibility that they have only come across isolated cases, the researchers have extended the analysis to over 7,000 genomes and observed the phenomenon very frequently. In future research, this finding will also facilitate distinguishing between beneficial symbionts and harmful parasites. If there has been a CRIPSR recognition, the microorganism is very likely to be a parasite. This will probably also help better understand important metabolic processes, such as the carbon flow in ecosystems, in the future.

    Note to editors:
    We provide a photo of Prof. Dr. Alexander Probst for this press release (© UDE/Bettina-Engel-Albustin): https://www.uni-due.de/de/presse/pi_fotos.php

    Editor: Juliana Fischer, Tel. 0203/379-1488, juliana.fischer@uni-due.de


    Contact for scientific information:

    Prof. Dr. Alexander Probst, Research Centre One Health Ruhr an der UDE, Tel. +49(0)201-1837080, Mail alexander.probst@uni-due.de


    Original publication:

    https://www.nature.com/articles/s41564-023-01439-2


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology
    transregional, national
    Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).