idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/04/2023 12:56

Auf den Spuren der Ursprünge des Lebens

Dr. Manuel Maidorn Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation

    Moleküle können aktive Cluster bilden, die Stoffwechselprozesse katalysieren, indem sie selbsterzeugten Konzentrationsgradienten folgen. Dies ist das Ergebnis einer neuen Studie von Wissenschaftlern des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPI-DS). Ihr Modell beschreibt die Selbstorganisation von Molekülen, die an Stoffwechselwegen beteiligt sind und fügt so der Theorie über den Ursprung des Lebens einen möglichen neuen Mechanismus hinzu. So lässt sich besser verstehen, wie an komplexen biologischen Netzwerken beteiligte Moleküle, dynamische und funktionale Strukturen bilden können. Die Ergebnisse bieten einen Ansatzpunkt für weitere Experimente zur Entstehung des Lebens.

    Ein mögliches Szenario für den Ursprung des Lebens ist die spontane Organisation von interagierenden Molekülen zu zellartigen Tröpfchen. Diese bilden in der Folge die ersten selbstreplizierenden Stoffwechselzyklen, welche in der Biologie weit verbreitet und in allen Organismen zu finden sind. Diesem Szenario nach müssten sich die ersten Biomoleküle dabei durch langsame, allerdings überwiegend ineffiziente Prozesse zusammenschließen. Eine solch langsame Clusterbildung scheint unvereinbar mit der Geschwindigkeit, mit der das Leben entstanden ist. Wissenschaftler der Abteilung Physik der lebenden Materie des MPI-DS haben nun ein alternatives Modell vorgeschlagen, das eine solche Clusterbildung von katalytisch aktiven Molekülen und damit das schnelle Einsetzen der für die Entstehung von Leben erforderlichen chemischen Reaktionen erklärt.

    "Dazu haben wir verschiedene Moleküle in einem einfachen Stoffwechselzyklus betrachtet, bei dem jedes Molekül oder Partikel eine Chemikalie produziert, die von dem nächsten verwendet wird", berichtet Vincent Ouazan-Reboul, Erstautor der Studie. "Die einzigen Bestandteile des Modells sind dabei die katalytische Aktivität der Moleküle, ihre Fähigkeit einem selbsterzeugten Konzentrationsgradienten der Chemikalien zu folgen, sowie die Information über die Reihenfolge der Moleküle im Zyklus", fährt er fort. Unter diesen Voraussetzungen zeigt das Modell die Bildung von katalytischen Clustern, die verschiedene Molekülarten enthalten. Das Wachstum von Clustern erfolgt zudem exponentiell: Die Moleküle können sich also sehr schnell und in großer Zahl zu dynamischen Strukturen zusammensetzen.

    Darüber hinaus spielt die Anzahl der Molekülspezies, die am Stoffwechselzyklus teilnehmen, eine Schlüsselrolle für die Struktur der gebildeten Cluster. Ramin Golestanian, Direktor am MPI-DS, fasst zusammen: "Unser Modell führt zu einer Fülle komplexer Szenarien für die Selbstorganisation und macht spezifische Vorhersagen über funktionelle Vorteile, die sich bei einer ungeraden oder geraden Anzahl von beteiligten Spezies ergeben. Bemerkenswert ist, dass die nicht-reziproken Interaktionen als notwendiger Bestandteil in unserem vorgeschlagenen Szenario in allen Stoffwechselzyklen zu beobachten sind."

    In einer anderen Studie fanden die Autoren heraus, dass Selbstanziehung von Molekülen für die Clusterbildung in einem kleinen Stoffwechselnetzwerk nicht erforderlich ist. Stattdessen können Netzwerkeffekte dazu führen, dass sich sogar eigentlich abstoßende Molekülspezies zu Gruppen zusammenschließen. Damit zeigen die Forscher neue Bedingungen auf, unter denen komplexe Wechselwirkungen selbstorganisierte Strukturen schaffen können.

    Insgesamt fügen die neuen Erkenntnisse der Studien der Theorie zur Entstehung des Lebens aus einfachen Molekülen einen weiteren Mechanismus hinzu. Sie decken auf, wie an Stoffwechselnetzwerken beteiligte Moleküle selbstständig komplexe Strukturen bilden können.


    Contact for scientific information:

    Prof. Ramin Golestanian
    ramin.golestanian@ds.mpg.de


    Original publication:

    Ouazan-Reboul, V., Agudo-Canalejo, J. & Golestanian, R. Self-organization of primitive metabolic cycles due to non-reciprocal interactions. Nat Commun 14, 4496 (2023).


    Images

    Ein neues Modell beschreibt die Selbstorganisation von katalytischen Molekülen, die an Stoffwechselzyklen beteiligt sind. Verschiedene Arten von Katalysatoren (dargestellt durch unterschiedliche Farben) bilden Cluster und können sich gegenseitig verfolgen
    Ein neues Modell beschreibt die Selbstorganisation von katalytischen Molekülen, die an Stoffwechselz ...
    Vika Novak
    MPI-DS / LMP


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Physics / astronomy
    transregional, national
    Research results
    German


     

    Ein neues Modell beschreibt die Selbstorganisation von katalytischen Molekülen, die an Stoffwechselzyklen beteiligt sind. Verschiedene Arten von Katalysatoren (dargestellt durch unterschiedliche Farben) bilden Cluster und können sich gegenseitig verfolgen


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).