idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/22/2023 15:20

Insecticides affect aquatic insects in unexpected ways

Mareen Gerisch Museum der Natur Hamburg, Presse und Kommunikation
Leibniz-Institut zur Analyse des Biodiversitätswandels

    Pesticide pollution of streams in agricultural areas has adverse effects for stream organisms. A new study, led by researchers from the Leibniz Institute for the Analysis of Biodiversity Change (LIB), provides evidence that aquatic insect larvae respond to insecticide exposure with alterations of the genetic program.

    Crop protection products (Pesticides) are among the most widely applied chemicals and threaten freshwater ecosystems at a global scale. Unknown in particular are genetic responses of aquatic animals such as insects evoked by pesticide pollution. A new study, published in Environmental Pollution, detected alterations of the genetic program in aquatic insect larvae due to insecticide exposure.

    Chlorantraniliprole is a widely used insecticide applied against butterfly pest species. According to the study, the substance is not only toxic for butterfly pest species, but negatively affects caddisflies, the sister group of butterflies, as well as mayflies. These organisms showed strong genetic stress responses when they were confronted with the insecticide.

    Against their expectations, the researchers identified in both organismic groups changes in the activity of genes involved in the developmental program of insect larvae. This is concerning since adult caddisflies and mayflies are integral parts in the diet of many predatory animals such as birds.

    “As such, alterations of the developmental cycle in aquatic insects can have pronounced effects on the stream ecosystem itself and additionally on the linked riparian habitat”, is emphasized by Marie Brasseur, first author of the study and PhD candidate at the LIB. “Pesticide pollution can affect biological communities in a cross-ecosystem context, as these substances can harm not only pest species but also other organismic groups”

    During the course of this ten day study, stream water and aquatic invertebrates were taken from the Bieber, a small stream in Hesse. In the lab, closed water circuits were used to expose the test organisms to the insecticide. The insecticide-induced genetic responses were decoded with a molecular method termed RNA-sequencing. The obtained data enabled the researchers to identify genes in the test organisms which were activated or suppressed due to insecticide exposure.

    The peer reviewed study is publicy available and is the result of a cooperation between the LIB, Museum Koenig Bonn, the Aquatic Ecosystem Research Group of the University of Duisburg-Essen, and the Landscape Ecology Research Group of the RPTU Kaiserslautern-Landau.


    Contact for scientific information:

    Leibniz Institute for Biodiversity Change Analysis (LIB)
    Museum Koenig Bonn
    Marie Valerie Brasseur
    PhD student LIB
    m.brasseur@leibniz-lib.de


    Original publication:

    Original study in Environmental Pollution

    https://www.sciencedirect.com/science/article/pii/S0269749123013088

    Marie V. Brasseur, Florian Leese, Ralf B. Schäfer, Verena C. Schreiner, Christoph Mayer, Transcriptomic sequencing data illuminate insecticide-induced physiological stress mechanisms in aquatic non-target invertebrates, Environmental Pollution, Volume 335, 2023, 122306, ISSN 0269-7491, https://doi.org/10.1016/j.envpol.2023.122306


    More information:

    http://www.leibniz-lib.de


    Images

    Larva of the large mayfly Ephemera danica – one of the three species studied.
    Larva of the large mayfly Ephemera danica – one of the three species studied.

    LIB, Matthias Geiger

    Experimental setup to determine the effects of the pesticide chlorantraniliprole on mayflies, caddisflies, and stream fleas.
    Experimental setup to determine the effects of the pesticide chlorantraniliprole on mayflies, caddis ...

    LIB, Marie Brasseur


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Biology, Environment / ecology, Zoology / agricultural and forest sciences
    transregional, national
    Research results, Scientific Publications
    English


     

    Larva of the large mayfly Ephemera danica – one of the three species studied.


    For download

    x

    Experimental setup to determine the effects of the pesticide chlorantraniliprole on mayflies, caddisflies, and stream fleas.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).