idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/27/2023 13:26

Der kleinste Kandinsky der Welt

Lydia Lehmann Stabsstelle Hochschulkommunikation
Universität Stuttgart

    Physiker der Universität Stuttgart minimiert Kandinskys farbenprächtiges Landschaftsbild "Improvisation 9" auf die Größe eines Staubkorns.

    Ein Gemälde auf Haaresbreite schrumpfen lassen und dabei alle Farben originalgetreu abbilden? Dr. Mario Hentschel vom 4. Physikalischen Institut der Universität Stuttgart ist das gelungen. Der Physiker strukturierte Kandinskys „Improvisation 9“ mittels Ionenstrahl-Lithographie – einer Strukturierungstechnik aus der Halbleiterindustrie – auf eine Fläche von 180 x 180 Quadratmikrometern. Unter dem Mikroskop entpuppen sich neue Chancen für die Archivierung von Kunst sowie für Anwendungen in der Sensorik, Nanophotonik und Halbleitertechnik. Wie Kunst und Physik im kleinsten Kandinsky der Welt zusammentreffen, können Besucher*innen und Schulklassen bis zum 3. Dezember 2023 in der Staatsgalerie Stuttgart herausfinden.

    Farben entstehen aus der Reflexion bzw. Absorption von Licht. So simpel das auch klingen mag, ist es doch eine echte Herausforderung, die gesamte Farbpalette physikalisch abzubilden. Nanophotonische Strukturen mit Resonanzen im ultravioletten, grünen oder gelben Spektralbereich (oder eben Strukturen, die diese Farben zeigen), sind kaum oder nur sehr aufwendig zu erzielen. Dadurch bleiben technische Potenziale, zum Beispiel in der Sensortechnologie und Nanophotonik ungenutzt. Dr. Mario Hentschel vom 4. Physikalischen Institut der Universität Stuttgart ist auf eine Möglichkeit gestoßen, die das ändern könnte.

    Physiker schließt Licht in Luft ein
    Dem Stuttgarter Physiker ist es gelungen, Licht in Luft anstelle von Material einzuschließen. „Materialien wie Silizium sind intransparent und verschlucken dadurch viel Licht“, erklärt Hentschel. „Wir haben herausgefunden, dass sich dieser Einsperrmechanismus umkehren lässt.“

    Da Luft transparent ist und nahezu kein Licht absorbiert, gelingt es dem Physiker in schwer zugängliche Frequenzbereiche vorzudringen. Dadurch eröffnen sich neue Dimensionen, etwa für die Herstellung von Mikrochips und Kameralinsen, die Gestaltung von Sicherheitsfeatures, zum Beispiel für Kreditkarten, sowie für biomedizinische Analysen von Zellgewebe. Denkbar ist außerdem, Wissens- und Kunstschätze auf kleinstem Raum zu archivieren, ohne dass Schrift und Farbe mit der Zeit verbleichen.

    Physik trifft Kunst
    Um seine Entdeckung in all ihrer Farbenpracht zu demonstrieren, strukturierte Hentschel mittels Ionenstrahl-Lithographie Wassily Kandinskys „Improvisation 9“ auf einen Siliziumwafer – ein Ausgangsmaterial in der Mikroelektronik und Chipherstellung. Mit einem fokussierten Gold-Ionenstrahl, ähnlich wie ein Sand- oder Wasserstrahl aus einer Düse, wird Material direkt von der Oberfläche abgetragen. Dieser „Goldsandstrahl“ gräbt kegelförmige Löcher in die Siliziumscheibe. Je nach Tiefe und Durchmesser entstehen unterschiedliche Farben. Jedes der Löcher bildet einen Pixel des Bildes, dadurch hat der Mini-Kandinsky eine schier unvorstellbare Auflösung von 36.000 dpi (dots per inch).
    „Was sich in einem einzelnen Loch abspielt, lässt sich mit einem Phänomen vergleichen, das uns zum Beispiel aus der Kuppel der St. Pauls Cathedral in London bekannt ist“, erklärt Hentschel. „Sie können deutlich hören, was eine Person sagt, die sich auf der anderen Seite der Kuppel befindet, so als stünden Sie neben ihr. Das kommt daher, dass sich der Schall entlang der Kuppelwand ausbreitet und dort eine stehende Welle bildet, wie die Schwingungen auf der Seite einer Geige. Sehr ähnlich verhält es sich mit Licht, das im Loch an der Grenzfläche zwischen dem Silizium und der Luft entlang bewegt.“

    Innerhalb des zylindrischen Loches wird das Licht bei minimaler Absorption hin und her geworfen. Sichtbar für das Auge ist dieses Phänomen nur unter dem Mikroskop, denn die Kandinsky-Kopie misst 180 x 180 Quadratmikrometer – ein menschliches Haar hat im Vergleich etwa eine Dicke von 80 Mikrometern.
    Mini-Kandinsky in der Staatsgalerie neben Original ausgestellt
    Der Mini-Kandinsky ist bis zum 3. Dezember 2023 in der Staatsgalerie Stuttgart neben dem Original zu sehen. Das Nano-Duplikat passt beinahe 40 Millionen mal in das Original mit einer Kantenlänge von 110 Zentimetern. Die Ausstellung des Sonderstücks ist eine Kooperation zwischen der Staatsgalerie, der Universität Stuttgart und der Carl Zeiss AG, die das optische Mikroskop für die Visualisierung zur Verfügung stellt. Gemeinsam mit dem Kurator Hendrik Bündge bietet Hentschel Führungen an – sowohl zum Werk Kandinskys als auch zu dessen physikalischer Kopie. Schulklassen der Oberstufe technischer Gymnasien und Physikleistungskurse haben freien Eintritt. Die Führungen finden statt am

    10. Oktober 2023, 10:15 bis 11:15 Uhr
    12. Oktober 2023, 17:00 bis 18:00 Uhr


    Contact for scientific information:

    Dr. Mario Hentschel, Universität Stuttgart, 4. Physikalisches Institut
    Tel.: +49 711 685 65104 , E-Mail


    Original publication:

    M. Hentschel et al., “Dielectric Mie Voids: Confining Light in Air”, Light: Science and Applications 12, 3 (2023): https://www.nature.com/articles/s41377-022-01015-z


    Images

    Ein Ausschnitt der Kandinsky-Kopie unter dem Mikroskop. Mit einem fokussierten Gold-Ionenstrahl werden kegelförmige Löcher mit unterschiedlicher Tiefe und variierendem Durchmesser auf die Oberfläche eines Siliziumwafers eingeprägt.
    Ein Ausschnitt der Kandinsky-Kopie unter dem Mikroskop. Mit einem fokussierten Gold-Ionenstrahl werd ...

    4. Physikalisches Institut / Universität Stuttgart


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Art / design, Physics / astronomy
    transregional, national
    Miscellaneous scientific news/publications, Transfer of Science or Research
    German


     

    Ein Ausschnitt der Kandinsky-Kopie unter dem Mikroskop. Mit einem fokussierten Gold-Ionenstrahl werden kegelförmige Löcher mit unterschiedlicher Tiefe und variierendem Durchmesser auf die Oberfläche eines Siliziumwafers eingeprägt.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).