idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/04/2023 14:49

Warum es heiß wird, wenn man Dinge aneinander reibt

Bastian Schmidt Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

    Forschende enträtseln das Geheimnis der dynamischen Reibung auf atomarer Ebene

    Reibung, ein alltägliches Phänomen, hat die Wissenschaft seit Jahrhunderten beschäftigt. Trotz umfangreicher Forschungsarbeiten ist unser Verständnis nach wie vor lückenhaft, was vor allem auf die vielfältigen Wechselwirkungen zurückzuführen ist, die sich über unterschiedliche Längenbereiche erstrecken. Das exakte Verständnis der Kontaktbedingungen zwischen Objekten ist seit langem eine Herausforderung, die erst kürzlich durch Fortschritte in der Rastersondenmikroskopie möglich wurde.

    Doch selbst mit diesen technologischen Durchbrüchen blieben die Feinheiten der dynamischen Reibung - die Kraft, die zur Aufrechterhaltung der Bewegung eines Moleküls erforderlich ist - schwer zu erfassen. Während Wissenschaftler*innen die statische Reibung messen konnten, indem sie ein einzelnes Molekül auf einer Oberfläche bewegten, waren sowohl die Messung als auch das theoretische Verständnis der dynamischen Reibung noch nicht vollständig erforscht.
    In den Fachzeitschriften Physical Review Letters und Physical Review B berichtet nun ein Team der Universität Kanazawa (Japan), des Donostia International Physics Center (Spanien) und der Universität Regensburg (Prof. Dr. Franz J. Giessibl, Lehrstuhl für Quanten-Nanowissenschaft) über eine bahnbrechende Studie, die sich mit dieser Herausforderung eingehend befasst. Sie haben die Manipulation eines Kohlenstoffmonoxid (CO)-Moleküls auf einer einkristallinen Kupferoberfläche mit Hilfe eines Rasterkraftmikroskops genauestens untersucht. Gestützt auf Berechnungen geben ihre Ergebnisse Aufschluss über:
    1. Die Positionierung des CO-Moleküls relativ zur Mikroskopspitze und zur Oberfläche.
    2. Über die Beziehung zwischen der durch die Spitze induzierten Bewegung des Moleküls, der Wärmeerzeugung sowie der Haft- und der Gleitreibung.
    „Reibung lässt sich letztlich auf die Kräfte atomarer Kontakte zwischen zwei reibenden Körpern zurückführen. Als Modell kann man sich ein Ei im Eierkarton vorstellen, dessen Vertiefungen die bevorzugten Plätze eines darauf "reibenden" Atoms darstellen. Die Kräfte, die zwischen Atomen wirken, haben aber keine so einfache Natur wie die Kräfte, denen ein Ei im Eierkarton unterliegt. Vielmehr unterliegt die Natur dieser Kräfte der Quantenmechanik, und nicht der einfacheren und viel älteren klassischen Mechanik. Professor Okabayashi und seine Kollegen haben nun gefunden, dass beim Schieben eines Kohlenstoffmonoxid-Moleküls über eine Metalloberfläche ein mysteriöser Brückenzustand ausgebildet wird, der nur durch die Quantenmechanik der Reibung beschrieben werden kann“, erklärt Prof. Dr. Giessibl.

    Diese Forschungsarbeit zeichnet sich durch ihre unmissverständliche Klarheit über den Reibungsprozess aus. Sie bietet nicht nur neue Einblicke in ein seit langem untersuchtes Phänomen, sondern ebnet auch den Weg für künftige Studien über die atomaren Prozesse bei der Umwandlung mechanischer Energie in Wärme.


    Contact for scientific information:

    Prof. Dr. Franz J. Giessibl
    Lehrstuhl für Quanten-Nanowissenschaft
    Institut für Experimentalphysik und angewandte Physik
    Universität Regensburg
    Tel.: +49 (0) 941 943‑2105
    E-Mail: franz.giessibl@ur.de
    http://www.physik.uni‑regensburg.de/forschung/giessibl


    Original publication:

    PHYSICAL REVIEW LETTERS
    Norio Okabayashi, Thomas Frederiksen, Alexander Liebig, Franz J. Giessibl; „Dynamic Friction Unraveled by Observing an Unexpected Intermediate State in Controlled Molecular Manipulation”; 2023; Phys. Rev. Lett. 131, 148001
    https://doi.org/10.1103/PhysRevLett.131.148001
    https://journals.aps.org/prl/accepted/f5075Yc2N5e1d77db92d2f819acd0df5751856c19

    PHYSICAL REVIEW B
    Norio Okabayashi, Thomas Frederiksen, Alexander Liebig, Franz J. Giessibl, „Energy dissipation of a carbon monoxide molecule manipulated using a metallic tip on copper surfaces”; 2023, Phys. Rev. B 108, 165401
    https://doi.org/10.1103/PhysRevB.108.165401


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research projects, Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).