idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/04/2023 14:53

Why Does It Get Hot When You Rub Things Together?

Bastian Schmidt Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

    Unraveling the Mystery of Dynamic Friction at the Atomic Level

    Friction, an everyday phenomenon, has perplexed scientists for centuries. Though extensively researched, our understanding remains fragmented, primarily due to the multifaceted interactions that span across varying scales. Achieving an accurate grasp of the precise contact conditions between objects has been a longstanding challenge, a feat recently made possible through advancements in scanning probe microscopy.

    Yet, even with these technological breakthroughs, the intricacies of dynamic friction – the force needed to maintain the movement of a molecule – have remained elusive. While scientists could measure static friction by moving a single molecule on a surface, both the measurement and theoretical understanding of dynamic friction have yet to be fully unveiled.

    Now, writing in Physical Review Letters and Physical Review B, a collaborative team from Kanazawa University (Japan), the Donostia International Physics Center (Spain), and the University of Regensburg (Prof. Dr. Franz J. Giessibl, Chair of Quantum Nanoscience) report their groundbreaking study that dives deep into this challenge. They meticulously examined the manipulation of a carbon monoxide (CO) molecule on a single-crystal copper surface using an atomic force microscope. Backed by ab initio calculations, their findings shed light on:

    • How the CO molecule positions relative to the microscope tip and surface.
    • The relationship between the motion of the molecule induced by the tip, energy dissipation, and both static and dynamic friction.

    "Friction can ultimately be traced back to the forces of atomic contacts between two rubbing bodies. As a model, one can imagine an egg in an egg carton, whose depressions represent the preferred places of an atom "rubbing" on it. However, the forces acting between atoms do not have such a simple nature as the forces to which an egg in an egg carton is subject. Rather, the nature of these forces is governed by quantum mechanics, and not by the simpler and much older classical mechanics. Professor Okabayashi and his colleagues have now found that when a carbon monoxide molecule is pushed across a metal surface, a mysterious bridge state is formed that can only be described by quantum mechanical calculations", explains Prof. Dr. Giessibl.

    This research stands out for its unequivocal clarity on the friction process. Not only does it provide fresh insights into a long-studied phenomenon, but it also paves the way for future studies on energy dissipation relaxation processes.


    Contact for scientific information:

    Prof. Dr. Franz J. Giessibl
    Chair for Quantum Nanoscience
    Institute of Experimental and Applied Physics
    University of Regensburg
    Phone +49 (0) 941 943‑2105
    Mail: franz.giessibl@ur.de
    http://www.physik.uni‑regensburg.de/forschung/giessibl


    Original publication:

    PHYSICAL REVIEW LETTERS
    Norio Okabayashi, Thomas Frederiksen, Alexander Liebig, Franz J. Giessibl; „Dynamic Friction Unraveled by Observing an Unexpected Intermediate State in Controlled Molecular Manipulation”; 2023; Phys. Rev. Lett. 131, 148001
    https://doi.org/10.1103/PhysRevLett.131.148001
    https://journals.aps.org/prl/accepted/f5075Yc2N5e1d77db92d2f819acd0df5751856c19

    PHYSICAL REVIEW B
    Norio Okabayashi, Thomas Frederiksen, Alexander Liebig, Franz J. Giessibl, „Energy dissipation of a carbon monoxide molecule manipulated using a metallic tip on copper surfaces”; 2023, Phys. Rev. B 108, 165401
    https://doi.org/10.1103/PhysRevB.108.165401


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research projects, Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).