idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/13/2023 09:52

Interplay of free electrons - Tailored electron pulses for improved electron microscopy

Dr. Carmen Rotte Kommunikation & Medien
Max-Planck-Institut für Multidisziplinäre Naturwissenschaften

    Electron microscopes provide unique vistas of nanoscale structures, but their resolution is limited by the mutual repulsion of electrons. Researchers in Göttingen have now succeeded in precisely measuring the influence of these interactions. They discovered an “energetic fingerprint” in which the distribution of the electrons’ velocities is characteristic of their respective numbers. This finding has enabled the team to develop a method that could increase the performance of established electron microscopes and open up a new interface between electron microscopy and quantum technology.

    Our understanding of nanoscale phenomena largely rests on the performance of modern microscopy. For example, transmission electron microscopes routinely achieve atomic resolution nowadays. In these microscopes, electrons are sent through an object under investigation to obtain an image – in some analogy to a light microscope. Thereby, electron microscopes can visualize molecular structures, the atomic ordering in solids, and the shape of nanoparticles.

    However, the contrast and resolution of electron microscopes is limited, among other things, by interactions between electrons: when two electrons come close to each other, they mutually repel due to the Coulomb force. This limits the maximum usable brightness of an electron beam. Researchers led by Claus Ropers, director at the Max Planck Institute (MPI) for Multidisciplinary Sciences, have now resolved and analyzed the repulsion between individual electrons in the microscope for the first time. Using the new insights, they developed methods that make use of this interparticle repulsion.

    Counted electrons

    “Electrons in a beam are randomly distributed. Therefore, one cannot control the inaccuracies introduced by Coulomb forces,” says Rudolf Haindl, first author of the study recently published in the scientific magazine Nature Physics. But when the physicists use a laser to generate electrons in the form of ultrashort pulses, they also create packets with exactly two, three, or four electrons. These electrons are closely confined in space and time such that they interact with each other. With the help of a spectrometer and an event-based detector, the energy exchange between electrons in a pulse becomes visible. “Depending on how many electrons are in a pulse, the electrons repel each other to different degrees – this allowed us to determine an energetic fingerprint for the number of electrons in a pulse,” Haindl points out.

    New possibilities

    Based on their findings, the team developed new schemes to use the multi-electron states in electron microscopes. “We have worked out a procedure that will enable us to generate electron pulses with a fixed number of electrons in the future. This can significantly increase the performance of electron microscopes in basic research and technology applications, for example in semiconductor manufacturing,” explains Armin Feist, co-author and physicist in Ropers’ team.

    Max Planck Director Ropers adds, “In addition to the implications for electron microscopy and lithography, we believe that the electrons are also quantum mechanically ‘entangled’, tied to each other in a specific quantum way, which opens up a new interface between electron microscopy and quantum technology.”


    Contact for scientific information:

    Prof. Dr. Claus Ropers
    Department of Ultrafast Dynamics
    Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
    phone: +49 551 39-39083
    e-mail: claus.ropers@mpinat.mpg.de


    Original publication:

    Haindl, R., Feist, A., Domröse, T., Möller, M., Gaida, J.H., Yalunin, S.V., Ropers, C.: Coulomb-correlated electron number states in a transmission electron microscope beam. Nat. Phys. 19, 1410–1417 (2023).
    https://doi.org/10.1038/s41567-023-02067-7


    More information:

    https://www.mpinat.mpg.de/4536030/pr_2316 – Original Press Release
    https://www.mpinat.mpg.de/ropers – Website of the Department of Ultrafast Dynamics at the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany


    Images

    Plots of the measured energetic fingerprints of pulsed electron beams with different electron numbers.
    Plots of the measured energetic fingerprints of pulsed electron beams with different electron number ...
    Rudolf Haindl
    Max Planck Institute for Multidisciplinary Sciences

    Two researchers from Claus Ropers’ department are working on an ultrafast transmission electron microscope, UTEM for short.
    Two researchers from Claus Ropers’ department are working on an ultrafast transmission electron micr ...
    Irene Boettcher-Gajewski
    Max Planck Institut for Multidisciplinary Sciences


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Plots of the measured energetic fingerprints of pulsed electron beams with different electron numbers.


    For download

    x

    Two researchers from Claus Ropers’ department are working on an ultrafast transmission electron microscope, UTEM for short.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).