idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/22/2023 20:00

Sauerstoff-Zerfall zeitaufgelöst mit erstmaliger Kombination von extrem-ultravioletten Lichtquellen

Dr. Bernold Feuerstein Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik

    Forschenden ist es erstmals gelungen, ein Sauerstoff-Molekül durch eine Kombination zweier extrem-ultravioletter Lichtquellen selektiv anzuregen, damit einen Zerfall des Moleküls herbeizuführen und dies sogar zeitlich zu verfolgen. Das ist ein weiterer Schritt zu einer spezifischen quantenmechanischen Kontrolle von chemischen Reaktionen, die in Zukunft neue, bisher unbekannte Reaktionskanäle ermöglichen könnte.

    Die Interaktion von Licht mit Materie, insbesondere mit Molekülen, spielt in vielen Bereichen der Natur eine wichtige Rolle, so etwa in biologischen Prozessen wie der Photosynthese. Zudem wird sie in Technologien wie Solarzellen genutzt. Auf der Erdoberfläche handelt es sich dabei meistens um sichtbares, ultraviolettes oder infrarotes Licht. Extrem-ultraviolettes (XUV) Licht, also Strahlung mit deutlich mehr Energie als sichtbares Licht, wird von der Atmosphäre absorbiert und erreicht die Erdoberfläche daher nicht. Aber diese XUV-Strahlung kann im Labor dazu genutzt werden, ganz gezielt die Anregung von Elektronen in Molekülen zu ermöglichen. Während in einem Molekül die einzelnen Atome durch ihre äußersten Elektronen in einer Art negativ geladenen Wolke zusammengehalten werden (sie dienen quasi als „chemischer Kleber“), sind weiter innen liegende Elektronen näher an einem Atomkern gebunden und daher auch im Molekül stärker lokalisiert. Genau diese Elektronen können nun aber mit XUV-Strahlung ganz spezifisch angeregt werden. Dies ermöglicht neue chemische Reaktionsprozesse, die auf der Erdoberfläche natürlicherweise nicht vorkommen.

    Eine Kollaboration von Forschenden der Gruppe um Christian Ott in der Abteilung Pfeifer am Max-Planck-Institut für Kernphysik ist es nun erstmalig gelungen, zwei unterschiedliche XUV-Lichtquellen zu kombinieren, um einen quantenmechanischen Zerfallsmechanismus in Sauerstoff-Molekülen zeitlich aufzulösen. Grundlage dafür sind einerseits der Prozess der Erzeugung hoher Harmonischer (high harmonic generation, HHG), bei dem infrarotes Licht, das durch eine Gaszelle gestrahlt wird, in XUV-Strahlung umgewandelt wird – u. a. bekannt durch den diesjährigen Nobelpreis für Physik. Zudem wird ein Freie-Elektronen-Laser (FEL) verwendet, bei dem beschleunigte Elektronen XUV-Licht abstrahlen. Beide Methoden erzeugen XUV-Lichtblitze mit einer Dauer von Femtosekunden, also dem Millionstel einer Milliardstel Sekunde.

    Entscheidend dabei ist, dass die Spektren der beiden Laserpulse sehr unterschiedlich sind. „Die HHG-Pulse haben ein sehr breites Spektrum, d.h. sie bestehen aus Licht mit vielen verschiedenen Frequenzen – im sichtbaren Bereich könnte man dies als verschiedene Farben auffassen. Die FEL-Pulse dahingegen sind spektral deutlich eingeschränk“, erklärt Doktorand und Erstautor der Studie Alexander Magunia. Die FEL-Pulse werden am Freie-Elektronen-Laser in Hamburg (FLASH@DESY) erzeugt und genutzt, um die Elektronen des Sauerstoffmoleküls in einen bestimmten Zustand anzuregen. Es ist bekannt, dass dieser anschließend über zwei verschiedene Kanäle das Molekül zum Zerfall bringen kann. Wie schnell dies passiert, war bisher aber noch umstritten. Die Atome im Sauerstoff-Molekül müssen nämlich einen „Quanten-Tunnel“-Prozess durchlaufen, was theoretische Beschreibungen erschwert. Durch die Hinzunahme des zweiten HHG-Pulses mit einstellbarer zeitlicher Verzögerung zum ersten, anregenden FEL Puls, kann nun dieser molekulare Zerfall experimentell aufgenommen werden – wie in einer schnellen Fotoreihe. Die HHG-Pulse erlauben es nämlich, alle entstehenden Fragmente durch ihre spektralen Absorptions-Fingerabdrücke auf einmal zu „fotografieren“ – ein entscheidender Schritt. Je größer die zeitliche Verzögerung zwischen den beiden Pulsen, desto mehr Moleküle sind bereits zerfallen. Durch diese Zunahme an Fragmenten können schließlich die Zeitdauer des Prozesses sowie die jeweiligen Raten für die beiden Zerfallskanäle ermittelt werden.

    Die Möglichkeit mit schmalbandigen FEL-Pulsen gezielte elektronische oder molekulare Prozesse einzuleiten und mit den breitbandigen HHG-Spektren unabhängig eine große Breite an quantenmechanischen Zustandsinformationen über das Molekül oder seine einzelnen Fragmente auszulesen, erlaubt es hoffentlich in Zukunft komplexere chemische Reaktionen mit Licht aufzunehmen, zu verstehen und schließlich auch zu steuern.


    Contact for scientific information:

    Alexander Magunia
    MPI für Kernphysik
    Tel.: +496221 516-335
    E-Mail: alexander.magunia@mpi-hd.mpg.de

    PD Dr. Christian Ott
    MPI für Kernphysik
    Tel.: +496221 516-577
    E-Mail: christian.ott@mpi-hd.mpg.de

    Prof. Dr. Thomas Pfeifer
    MPI für Kernphysik
    Tel.: +496221 516-380
    E-Mail: thomas.pfeifer@mpi-hd.mpg.de


    Original publication:

    Time-resolving state-specific molecular dissociation with XUV broadband absorption spectroscopy
    A. Magunia, M. Rebholz, E. Appi, C. C. Papadopoulou, H. Lindenblatt, F. Trost, S. Meister, T. Ding, M. Straub, G. D. Borisova, J. Lee, R. Jin, A. von der Dellen, C. Kaiser, M. Braune, S. Düsterer, S. Ališauskas, T. Lang, C. Heyl, B. Manschwetus, S. Grunewald, U. Frühling, A. Tajalli, A. Bin Wahid, L. Silletti, F. Calegari, P. Mosel, U. Morgner, M. Kovacev, U. Thumm, I. Hart, R. Treusch, R. Moshammer, C. Ott and T. Pfeifer
    Science Advances, 22 Nov 2023, DOI: 10.1126/sciadv.adk1482


    More information:

    https://www.mpi-hd.mpg.de/mpi/de/forschung/abteilungen-und-gruppen/quantendynami... Gruppe „Angeregte Atome und Moleküle in starken Feldern“ am MPIK
    https://www.desy.de/forschung/anlagen__projekte/flash/index_ger.html Freie-Elektronen-Laser FLASH (DESY, Hamburg)


    Images

    Abb. 1: Ein XUV-Laserpuls (pink) regt ein Sauerstoff-Molekül (orange) an, welches in verschiedene atomare Fragmente zerfällt, die von einem anderen XUV-Laserpuls (blau) „fotografiert“ werden.
    Abb. 1: Ein XUV-Laserpuls (pink) regt ein Sauerstoff-Molekül (orange) an, welches in verschiedene at ...

    Grafik: MPI für Kernphysik


    Criteria of this press release:
    Journalists, Scientists and scholars, Teachers and pupils
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Abb. 1: Ein XUV-Laserpuls (pink) regt ein Sauerstoff-Molekül (orange) an, welches in verschiedene atomare Fragmente zerfällt, die von einem anderen XUV-Laserpuls (blau) „fotografiert“ werden.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).