idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/23/2023 17:00

Extreme Sterne mit einzigartigen Eigenschaften, zur Herstellung einer Verbindung zu rätselhaften kosmischen Quellen

Norbert Junkes Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie

    Ein internationales Forscherteam unter der Leitung von Michael Kramer und Kuo Liu vom Bonner Max-Planck-Institut für Radioastronomie hat eine seltene Art ultradichter Sterne, so genannter Magnetare, untersucht, um ein zugrunde liegendes Gesetz zu entdecken, das universell für eine ganze Reihe von Objekten, die so genannten Neutronensterne, zu gelten scheint. Dieses Gesetz gibt Aufschluss darüber, wie diese Quellen Radiostrahlung erzeugen, und es könnte eine Verbindung zu den rätselhaften Strahlungsausbrüchen (Fast Radio Bursts) herstellen, die im fernen Universum angesiedelt sind.

    Neutronensterne sind die kollabierten Kerne massereicher Sterne, bei denen bis zu zwei Sonnenmassen in einer Kugel von weniger als 25 km Durchmesser konzentriert sind. Infolgedessen ist die Materie dort die am dichtesten gepackte im beobachtbaren Universum, wobei Elektronen und Protonen zu Neutronen komprimiert werden; daher der Name für diese Objekte. Mehr als 3000 Neutronensterne können als Radiopulsare beobachtet werden, die einen gebündelten Radiostrahl aussenden, der von der Erde aus als pulsierendes Signal sichtbar ist, wenn der rotierende Pulsar sein Licht in Richtung unserer Teleskope abstrahlt.

    Das Magnetfeld von normalen Pulsaren ist bereits Billionen Mal stärker als das Magnetfeld der Erde, aber es gibt eine kleine Gruppe von Neutronensternen, deren Magnetfeld sogar noch 1000 Mal stärker ist! Dies sind die so genannten Magnetare. Von den etwa 30 bekannten Magnetaren wurden sechs auch als Radiostrahler entdeckt, zumindest zeitweise. Um diesen Zusammenhang zu untersuchen, haben Forscher des Max-Planck-Instituts für Radioastronomie (MPIfR) mit Unterstützung von Kollegen der Universität Manchester die einzelnen Pulse von Magnetaren im Detail untersucht und eine Unterstruktur in ihnen entdeckt. Es stellte sich heraus, dass eine ähnliche Pulsstruktur auch in Pulsaren, in schnell rotierenden Millisekunden-Pulsaren, und in weiteren Neutronensternquellen, den so genannten „Rotating Radio Transients“, beobachtet wurde.

    Zu ihrer Überraschung stellten die Forscher fest, dass die Zeitskalen von Magnetaren und die der anderen Arten von Neutronensternen alle der gleichen universellen Beziehung folgen und genau mit der Rotationsperiode skalieren. Die Tatsache, dass sich ein Neutronenstern mit einer Rotationsperiode von weniger als ein paar Millisekunden und ein Neutronenstern mit einer Periode von fast 100 Sekunden wie ein Magnetar verhalten, deutet darauf hin, dass der eigentliche Ursprung der Subpulsstruktur bei allen Neutronensternen, die Radiostrahlung aussenden, derselbe sein muss. Das gibt Informationen über den Plasmaprozess, der für die Radioemission verantwortlich ist, und bietet eine Möglichkeit, ähnliche Strukturen, die in FRBs zu sehen sind, als Ergebnis einer entsprechenden Rotationsperiode zu interpretieren.

    „Als wir damit anfingen, die Emission von Magnetaren mit der von FRBs zu vergleichen, erwarteten wir durchaus Ähnlichkeiten", erinnert sich Michael Kramer, Erstautor der Studie und Direktor am MPIfR. „Was wir nicht erwartet haben, ist, dass alle radiostrahlenden Neutronensterne diese universelle Skalierung teilen."

    „Wir gehen davon aus, dass Magnetare durch Magnetfeldenergie angetrieben werden, während die anderen durch ihre Rotationsenergie angetrieben werden", ergänzt Kuo Liu. „Einige sind sehr alt, andere sehr jung, und doch scheinen alle diesem Gesetz zu folgen."

    Gregory Desvignes beschreibt das Experiment: „Wir haben die Magnetare mit dem 100-m-Radioteleskop in Effelsberg beobachtet und unsere Ergebnisse auch mit Archivdaten verglichen, da Magnetare nicht ständig Radioemission aussenden." „Da die Radioemission von Magnetaren nicht immer vorhanden ist, muss man flexibel sein und schnell reagieren, was mit Radioteleskopen wie dem in Effelsberg auch möglich ist", ergänzt Ramesh Karuppusamy.

    Für Ben Stappers, Mitautor der Studie, ist der spannendste Aspekt des Ergebnisses die mögliche Verbindung zu FRBs: „Wenn zumindest einige FRBs von Magnetaren verursacht werden, könnte die Zeitskala der Substruktur im Strahlungsausbruch uns die Rotationsperiode der zugrunde liegenden Magnetarquelle verraten. Wenn wir diese Periodizität in den Daten finden, wäre dies ein Meilenstein für die Erklärung dieser Art von FRBs als Radioquellen.“

    „Mit den neuen Ergebnissen machen wir uns nun auf, das Rätsel zu lösen", schließt Michael Kramer.

    ------------------------------------------

    Weitere Informationen

    Magnetare gehören zu den energiereichsten Neutronensternen, was auf ihre extrem starken Magnetfelder zurückzuführen ist. Von den über dreißig bisher entdeckten Magnetaren sind nur sechs bekannt, die Radioemission zeigen. In letzter Zeit hat das Forschungsinteresse an ihren Eigenschaften drastisch zugenommen, da sie möglicherweise mit schnellen Radiostrahlungsausbrüchen (FRBs) in Verbindung stehen. FRBs sind kurzzeitige Ausbrüche von Radioemissionen von nur wenigen Millisekunden Dauer, die von außergalaktischen Quellen erzeugt werden. Obwohl der Ursprung der FRBs noch nicht geklärt ist, wird spekuliert, dass Magnetare eine der möglichen FRB-Quellen darstellen.

    Schon bald nach der Erstentdeckung von Pulsaren wurden Substrukturen mit kurzzeitiger, konzentrierter Emission in ihrem Radiosignal gefunden. Typischerweise hat die Substruktur eine charakteristische Quasiperiodizität und Breite, die beide mit der Rotationsperiode des Pulsars skalieren. Diese Beziehung ist seit Jahrzehnten für normale Pulsare bekannt und wurde in den letzten Jahren auf die Millisekunden-Pulsare ausgedehnt. In jüngster Zeit wurde die gleiche Art von Mikroimpulsen kurzer Dauer auch bei einigen FRBs beobachtet. Das deutet darauf hin, dass bei all diesen kosmischen Quellen ein ähnlicher Emissionsprozess zugrunde liegt.

    Für die Untersuchung wurden Beobachtungen von allen sechs Magnetaren verwendet, die Radioastrahlung aussenden. Die Beobachtungen wurden mit dem 100-m-Radioteleskop in Effelsberg im CX-Band (zwischen 4 und 8 GHz) und einigen anderen Radioteleskopen der 100-m-Klasse rund um den Globus durchgeführt.

    Autoren der Veröffentlichung sind Michael Kramer, Kuo Liu, Gregory Desvignes, Ramesh Karuppusamy und Ben W. Stappers. Die ersten vier Autoren sind Mitarbeiter des Max-Planck-Instituts für Radioastronomie.


    Contact for scientific information:

    Prof. Dr. Michael Kramer
    Direktor und Leiter der Forschungsabteilung „Radioastronomische Fundamentalphysik”
    Max-Planck-Institut für Radioastronomie, Bonn.
    Fon: +49 228 525-299 (Sekretariat)
    E-mail: mkramer@mpifr-bonn.mpg.de

    Dr. Kuo Liu
    Max-Planck-Institut für Radioastronomie, Bonn
    Fon: +49 228 525-324
    E-mail: kliu@mpifr-bonn.mpg.de


    Original publication:

    M. Kramer et al.: “Quasi-periodic sub-pulse structure as a unifying feature for radio-emitting neutron stars”, in Nature Astronomy, 23 November 2023

    https://www.nature.com/articles/s41550-023-02125-3


    More information:

    https://www.mpifr-bonn.mpg.de/pressemeldungen/2023/13


    Images

    Künstlerische Darstellung eines Magnetars: ein Neutronenstern sendet mit Hilfe der im ultrastarken Magnetfeld gespeicherten Energie Radiostrahlung aus und verursacht so Ausbrüche, die zu den energiereichsten im Universum beobachteten Ereignissen zählen.
    Künstlerische Darstellung eines Magnetars: ein Neutronenstern sendet mit Hilfe der im ultrastarken M ...

    Michael Kramer / MPIfR


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Physics / astronomy
    transregional, national
    Research results
    German


     

    Künstlerische Darstellung eines Magnetars: ein Neutronenstern sendet mit Hilfe der im ultrastarken Magnetfeld gespeicherten Energie Radiostrahlung aus und verursacht so Ausbrüche, die zu den energiereichsten im Universum beobachteten Ereignissen zählen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).