idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/24/2023 10:51

Innovating Optoelectronic Components with Phosphorus

Nicole Gierig Pressestelle
Technische Universität Dresden

    Phosphorus chemist Prof. Jan J. Weigand from the Dresden University of Technology, in collaboration with an interdisciplinary team, has developed a groundbreaking method to introduce phosphorus and nitrogen atoms into polycyclic molecules. This method holds the potential to pave the way for the development of new materials with specific optoelectronic properties, ideal for applications in organic semiconductor technologies such as OLEDs and sensors. The results of this promising endeavour were published this week in the prestigious journal CHEM.

    Polyaromatic hydrocarbons, abbreviated as PAHs, play a central role in numerous (opto-) electronic applications, including chemical sensors, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and organic solar cells. Researchers are continually exploring the substitution of various elements beyond traditional carbon to optimize device performance and versatility. While substitution with boron (B), nitrogen (N), oxygen (O), and sulfur (S) has already undergone extensive research, the integration of phosphorus (P) in combination with nitrogen (N) remains a significant challenge.

    Prof. Jan J. Weigand and his research group at TUD Dresden University of Technology have recently achieved a significant breakthrough: "In our current research, we have developed an innovative method to selectively introduce phosphorus and nitrogen atoms into polyaromatic systems. This method allowed the synthesis of a wide range of P/N-substituted compounds, whose physicochemical properties were thoroughly investigated in collaboration with physicists from TUD. Through the combination of material simulations and spectroscopic measurements, we were able to gain fundamental insights into the structure-property relationships of the obtained compounds."

    The new method provides access to the well-known class of azaphospholes, which were previously only accessible in a very cumbersome manner and mostly in very low yields. Therefore, they were not considered for (opto-)electronic applications until now. "By deliberately combining phosphorus and nitrogen, we hope to be able to control the electronic and optical properties of these compounds in a way that was not possible before. This opens up exciting prospects for future applications in optoelectronics and beyond," adds Sebastian Reineke, head of the Light-Emitting and eXcitonic Organic Semiconductors Group (LEXOS) at TUD.


    Contact for scientific information:

    Prof. Jan J. Weigand
    Chair of Inorganic Molecular Chemistry
    TUD Dresden University of Technology
    Tel.: +49 351 463-42800
    jan.weigand@tu-dresden.de

    Dr. Kai Schwedtmann
    Weigand Research Group
    TUD Dresden University of Technology
    Tel.: +49 351 463-42803
    kai.schwedtmann@tu-dresden.de

    Prof. Sebastian Reineke
    Chair of Organic Semiconductors
    TUD Dresden University of Technology
    Tel.: +49 351 463-38686
    sebastian.reineke@tu-dresden.de


    Original publication:

    Jannis Fidelius, Kai Schwedtmann, Sebastian Schellhammer, [...], Antonio Frontera, Sebastian Reineke, Jan J. Weigand. Convenient Access to π-Conjugated 1,3-Azaphospholes from Alkynes via [3+2]-Cycloaddition and Reductive Aromatization, CHEM. DOI: 10.1016/j.chempr.2023.10.016


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Electrical engineering, Information technology, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).