idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/01/2023 09:39

Mit Superkristallen mehr Sonnenenergie ernten

LMU Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

    Ein Baustein für die Energiewende ist Wasserstoff. Um ihn mithilfe von Solarenergie zu gewinnen, haben LMU-Forscher neue Hochleistungs-Nanostrukturen entwickelt. Das Material hält einen Weltrekord bezüglich grüner Wasserstoff-Produktion mit Sonnenlicht.

    Wenn Emiliano Cortés auf die Jagd nach Sonnenlicht geht, nutzt er keine gigantischen Spiegel oder Solarparks. Im Gegenteil: Der Professor für Experimentalphysik und Energiekonversion an der LMU taucht in den Nanokosmos ab. „Wo die energiereichen Teilchen des Sonnenlichts auf atomare Strukturen treffen, beginnt unsere Forschung“, sagt Cortés. „Wir arbeiten an Materiallösungen, um Solarenergie effizienter zu nutzen.“ Seine Erkenntnisse haben großes Potenzial für neuartige Solarzellen und Photokatalysatoren. Doch es gibt eine Herausforderung, weiß Cortés: „Das Sonnenlicht kommt auf der Erde ‚verdünnt‘ an, also die Energie pro Fläche ist vergleichsweise gering.“ Solaranlagen kompensieren das über große Flächen. Cortés nähert sich von der anderen Richtung: Mit seinem Team am Nano-Institut der LMU, das vom Exzellenzcluster e-conversion, Solar Technologies go Hybrid (eine Initiative des Bayerischen Staatsministeriums für Wissenschaft und Kunst) und dem European Research Council gefördert wird, entwickelt er plasmonische Nanostrukturen, die die Sonnenenergie konzentrieren können. In einer Publikation im Fachmagazin Nature Catalysis präsentiert Cortés gemeinsam mit Dr. Matías Herrán und Kooperationspartnern der Freien Universität Berlin und der Universität Hamburg einen zweidimensionalen Superkristall, der aus Ameisensäure mithilfe von Sonnenlicht Wasserstoff erzeugt. „Das Material ist so herausragend, dass es den Weltrekord hält, was die Wasserstoffproduktion mithilfe von Sonnenlicht anbelangt“, betont Cortés.

    Nano-Hotspots entfesseln Katalysekraft
    Für ihren Superkristall nutzen Cortés und Herran zwei Metalle im Nanoformat. „Wir stellen zunächst aus Gold, einem plasmonischen Metall, Partikel von 10-200 Nanometern her“, erklärt Herrán. „In dieser Größenordnung wechselwirkt das sichtbare Licht sehr stark mit den Goldelektronen und veranlasst diese zu einer resonanten Schwingung.“ Dadurch fangen die Nanopartikel mehr Sonnenlicht ein und wandeln es in sehr energiereiche Elektronen um. „Es entstehen starke lokale elektrische Felder, die Hotspots“, sagt Herrán. Diese bilden sich zwischen den Goldpartikeln aus. Das brachte Cortés und Herran auf die Idee, Nanopartikel aus Platin in die Zwischenräume zu platzieren. „In den Hotspots bringen wir es dazu, Ameisensäure zu Wasserstoff umzusetzen“, erklärt Herrán. Mit einer Wasserstoffproduktionsrate – ausgehend von Ameisensäure – von 139 Millimol pro Stunde und pro Gramm Katalysator hält das photokatalytische Material derzeit den Weltrekord in Sachen H2-Produktion mit Sonnenlicht.

    Impulse für eine grünere Wasserstoffproduktion
    Heutzutage wird Wasserstoff in erster Linie aus fossilen Rohstoffen, allen voran Erdgas, hergestellt. „Durch die Kombination aus plasmonischen und katalytischen Metallen bringen wir die Entwicklung potenter Photokatalysatoren für die Industrie voran, zum Beispiel die Umwandlung von CO2 in nutzbare Substanzen“, erklären Cortés und Herrán, die ihre Materialentwicklung bereits patentiert haben.


    Contact for scientific information:

    Dr. Matías Herrán
    Nano-Institut München, Fakultät für Physik
    Ludwig-Maximilians-Universität
    matias.herran@physik.uni-muenchen.de

    Prof. Dr. Emiliano Cortés
    Nano-Institut München, Fakultät für Physik
    Ludwig-Maximilians-Universität
    Emiliano.Cortes@lmu.de
    https://www.nano-energy.org
    Twitter/X: @HybridNano


    Original publication:

    Matías Herrán, Sabrina Juergensen, Moritz Kessens, Dominik Hoeing, Andrea Köppen, Ana Sousa-Castillo, Wolfgang J. Parak, Holger Lange, Stephanie Reich, Florian Schulz, Emiliano Cortés: Plasmonic Bimetallic Two-Dimensional Supercrystals for H2 Generation. Nature Catalysis, 2023.
    https://doi.org/10.1038/s41929-023-01053-9


    Images

    Criteria of this press release:
    Journalists
    Chemistry, Electrical engineering, Energy, Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).