Secure communication, impervious to interception, is achieved through the application of quantum mechanics in a groundbreaking technology. This method facilitates not only tap-proof communication but also the tamper-proof transfer of diverse data. It seamlessly integrates into existing microchip and processor manufacturing processes, offering a cost-effective solution.
In conventional communication, data is generated and encrypted using mathematical algorithms. However, the vulnerability of this encryption lies in the decryptable nature of the underlying algorithm, as evidenced by numerous global cyberattacks, exposing weaknesses in data security. In contrast, the use of quantum objects for data transfer shifts the focus of data security to the inherent physical properties of these objects.
In a project supported by the Baden-Wuerttemberg Foundation, researchers at the University of Ulm have devised a method to establish communication links utilizing quantum objects. The technique, developed by Prof. Dr. Alexander Kubanek's team, employs two identical defect centers within nanodiamonds as building blocks for quantum mechanical entanglement, forming the foundation for a quantum data network.
This approach leverages the unique characteristics of as-yet-undiscovered quantum states, which resist copying or measurement without disruption. Quantum state disturbances are readily identified as transmission errors, thwarting potential eavesdropping attacks.
In the process of quantum entanglement, individual photons – particles of light – are utilized from the defect centers in nanodiamonds. The maneuverability of these nanoparticles allows the method to be theoretically integrated into existing microchip production processes.
This method developed by Prof Kubanek establishes communication links rooted in the principles of physics rather than relying solely on mathematical calculations for security. The current objective is to advance this tamper-proof technology towards market readiness through a startup initiative.
A patent application has been submitted for the invention (PCT/EP2023/064304 pending). The Technologie-Lizenz-Büro (TLB) GmbH actively supports the researchers and the Baden-Wuerttemberg Foundation in patenting, strategic intellectual property planning, and marketing ongoing developments.
TLB has been entrusted with the commercialization of this pioneering technology, seeking investors for the continued development of tamper-proof communication technology until it reaches the market-ready stage.
For additional information, please contact: Innovation Manager Dr. habil. Hans-Jürgen Eisler (eisler@tlb.de)
Prof. Dr. Alexander Kubanek, E-Mail: alexander.kubanek(at)uni-ulm.de
TLB-Innovationsmanager Dr. habil. Hans-Jürgen Eisler, E-Mail: eisler(at)tlb.de
https://www.technologie-lizenz-buero.com/presse-news/press-news-article/absolut-...
Absolutely tap-proof communication and the tap-proof transfer of other data is made possible by a ne ...
Prof Alexander Kubanek, University of Ulm
Proof of a coherent single photon source.
Prof Alexander Kubanek, University of Ulm
Criteria of this press release:
Business and commerce, Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
Electrical engineering, Energy, Information technology, Mechanical engineering, Physics / astronomy
transregional, national
Research results, Transfer of Science or Research
English
Absolutely tap-proof communication and the tap-proof transfer of other data is made possible by a ne ...
Prof Alexander Kubanek, University of Ulm
Proof of a coherent single photon source.
Prof Alexander Kubanek, University of Ulm
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).