idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/19/2023 13:47

Fortschritt bei Untersuchung von schnellen Elektronenbewegungen mit kurzen Lichtpulsen

Ute Kehse Presse & Kommunikation
Carl von Ossietzky-Universität Oldenburg

    Die schnellen Bewegungen von Elektronen gleichzeitig mit hoher räumlicher Genauigkeit und einer zeitlichen Auflösung im Bereich von Attosekunden zu untersuchen – das ist einem deutsch-schwedischen Team jetzt gelungen. Die Forschenden kombinierten eine spezielle Variante der Elektronenmikroskopie, die sogenannte Photoemissionselektronenmikroskopie (PEEM), mit den Möglichkeiten der Attosekundenphysik. Sie verwendeten unvorstellbar kurze Lichtblitze, um die Bewegung von Elektronen genau zu kontrollieren und ihr Verhalten zu erfassen. Mit dem Verfahren könnte sich in Zukunft das Verhalten von Elektronen in Nanomaterialien oder in neuartigen Solarzellen besser verstehen lassen.

    Wenn ein Elektron sich in einem Molekül oder einem Halbleiter bewegt, geschieht dies in unvorstellbar kurzen Zeiträumen. Auf dem Weg, solche Vorgänge besser zu verstehen, hat ein schwedisch-deutsches Team um den Physiker Dr. Jan Vogelsang von der Universität Oldenburg nun einen entscheidenden Fortschritt erzielt: Die Forschenden verfolgten die Bewegung von Elektronen, die durch einen Laserimpuls aus Kristallen der Verbindung Zinkoxid herausgelöst wurden, gleichzeitig mit einer räumlichen Auflösung im Nanometer-Bereich und bislang unerreichter zeitlicher Auflösung. Das Team demonstriert damit die Anwendbarkeit eines Verfahrens, mit dessen Hilfe sich beispielsweise das Verhalten von Elektronen in Nanomaterialien oder neuartigen Solarzellen besser verstehen lassen könnte. An der Studie, die in der Fachzeitschrift Advanced Physics Research veröffentlicht wurde, waren Forschende der Universität Lund beteiligt, darunter die diesjährige Physik-Nobelpreisträgerin Prof. Dr. Anne L’Huillier.

    Das Team kombinierte in den Experimenten eine spezielle Variante der Elektronenmikroskopie, die sogenannte Photoemissionselektronenmikroskopie (PEEM), mit den Möglichkeiten der Attosekundenphysik. Dabei verwenden Forschende unvorstellbar kurze Lichtblitze, um die Bewegung von Elektronen genau zu kontrollieren und das anschließende Verhalten zu erfassen. „Das Vorgehen kann man sich so ähnlich vorstellen wie in der Fotografie, wenn man eine schnelle Bewegung durch einen Blitz quasi einfriert“, erläutert Vogelsang. Eine Attosekunde ist dabei der Milliardste Teil einer Milliardstel Sekunde.

    Wie das Team berichtet, hatten ähnliche Experimente zuvor nicht die nötige zeitliche Genauigkeit erreicht, um die Bewegung von Elektronen verfolgen zu können. Die kleinen Elementarteilchen sausen deutlich schneller umher als die größeren und schwereren Atomkerne. In der aktuellen Studie sei es jedoch gelungen, die beiden technologisch anspruchsvollen Verfahren der Photoemissionselektronenmikroskopie und der Attosekundenmikroskopie zu kombinieren, ohne dass die räumliche oder zeitliche Auflösung darunter litt. „Wir haben nun endlich den Punkt erreicht, an dem wir Attosekundenpulse praktisch nutzen können, um die Wechselwirkung von Licht und Materie auf der atomaren Ebene und in Nanostrukturen detailliert zu untersuchen“, so Vogelsang.

    Einer der Punkte, die diesen Fortschritt ermöglichten, bestand darin, eine Lichtquelle zu verwenden, die besonders viele Attosekundenblitze pro Sekunde erzeugt – in diesem Fall 200.000 Lichtpulse pro Sekunde. Jeder Blitz löste dabei genau ein Elektron aus der Oberfläche des Kristalls, so dass die Forschenden deren Verhalten ungestört untersuchen konnten. „Je mehr Pulse pro Sekunde man erreicht, desto einfacher ist es, ein kleines Messsignal aus einem Datensatz zu extrahieren“, erläutert der Physiker.
    Die dafür nötige Technologie steht im Labor von Anne L’Huillier an der Universität Lund (Schweden) zur Verfügung, wo auch die Untersuchungen für die aktuelle Studie stattfanden. Vogelsang, der von 2017 bis 2020 als Postdoktorand in Lund forschte, baut das Verfahren derzeit auch an der Universität Oldenburg auf. In Zukunft wollen beide Teams die Untersuchungen fortführen und das Verhalten von Elektronen in verschiedenen Materialien und Nanostrukturen erkunden.

    Vogelsang leitet seit 2022 an der Universität Oldenburg die Forschungsgruppe Attosekundenmikroskopie, die von der Deutschen Forschungsgemeinschaft im renommierten Emmy Noether-Programm gefördert wird.


    Contact for scientific information:

    Dr. Jan Vogelsang, Tel.: 0441/798-3515, E-Mail: jan.vogelsang@uol.de


    Original publication:

    Jan Vogelsang, et al.: “Time-resolved photoemission electron microscopy on a ZnO surface using an extreme ultraviolet attosecond pulse pair”, Advanced Physics Research (2023). DOI: 10.1002/apxr.202300122


    More information:

    https://uol.de/atto


    Images

    Schematische Darstellung der Versuchsanordnung: Attosekundenpulse (violett) lösen Elektronen (grün) aus einer Kristalloberfläche. Das Photoemissionselektronenmikroskop (kegelförmiges Instrument oben) untersucht die schnellen Bewegungen der Elektronen.
    Schematische Darstellung der Versuchsanordnung: Attosekundenpulse (violett) lösen Elektronen (grün) ...

    Grafik: Jan Vogelsang

    Ein Blick in die Vakuumkammer des Photoemissionselektronenmikroskops in Lund: Mit einem ähnlichen Gerät untersuchte das Forschungsteam Elektronen, die mit Laserpulsen aus einer Probe herausgelöst worden waren.
    Ein Blick in die Vakuumkammer des Photoemissionselektronenmikroskops in Lund: Mit einem ähnlichen Ge ...

    Foto: Jan Vogelsang


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Schematische Darstellung der Versuchsanordnung: Attosekundenpulse (violett) lösen Elektronen (grün) aus einer Kristalloberfläche. Das Photoemissionselektronenmikroskop (kegelförmiges Instrument oben) untersucht die schnellen Bewegungen der Elektronen.


    For download

    x

    Ein Blick in die Vakuumkammer des Photoemissionselektronenmikroskops in Lund: Mit einem ähnlichen Gerät untersuchte das Forschungsteam Elektronen, die mit Laserpulsen aus einer Probe herausgelöst worden waren.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).