idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/20/2023 13:52

Aerogel can become the key to future terahertz technologies

Anders Törneholm Communications officer anders.torneholm@liu.se +4613286839 Kommunikationsavdelningen / Communications Department
Schwedischer Forschungsrat - The Swedish Research Council

    High-frequency terahertz waves have great potential for a number of applications including next-generation medical imaging and communication. Researchers at Linköping University, Sweden, have shown, in a study published in the journal Advanced Science, that the transmission of terahertz light through an aerogel made of cellulose and a conducting polymer can be tuned. This is an important step to unlock more applications for terahertz waves.

    The terahertz range covers wavelengths that lie between microwaves and infrared light on the electromagnetic spectrum. It has a very high frequency. Thanks to this, many researchers believe that the terahertz range has great potential for use in space exploration, security technology and communication systems, among other things. In medical imaging, it can also be an interesting substitute for X-ray examinations as the waves can pass through most non-conductive materials without damaging any tissue.

    However, there are several technological barriers to overcome before terahertz signals can be widely used. For example, it is difficult to create terahertz radiation in an efficient way and materials that can receive and adjust the transmission of terahertz waves are needed.

    Researchers at Linköping University have now developed a material whose absorption of terahertz signals can be turned on and off through a redox reaction. The material is an aerogel, which is one of the world’s lightest solid materials.

    “It’s like an adjustable filter for terahertz light. In one state, the electromagnetic signal will not be absorbed and in the other state it can. That property can be useful for long-range signals from space or radar signals,” says Shangzhi Chen, postdoc at the Laboratory of Organic Electronics, LOE, at Linköping University.

    The Linköping researchers used a conducting polymer, PEDOT:PSS, and cellulose to create their aerogel. They also designed the aerogel with outdoor applications in mind. It is both water-repellent (hydrophobic) and can be naturally defrosted via heating by sunlight.

    Conducting polymers have many advantages over other materials used to create tunable materials. Among other things, they are biocompatible, durable, and have a great ability to be tuned. The tunability comes from the ability to change the charge density in the material. The great advantages of cellulose are the relatively low production cost compared to other similar materials and that it is a renewable material which is key for sustainable applications.

    “The transmission of terahertz waves in a broad frequency range could be regulated between around 13 % and 91 %, which is a very large modulation range,” says Chaoyang Kuang, postdoc at LOE.

    More photos are available, please contact the press officer.

    The study was funded by, among others, the Swedish Research Council, the Foundation for Strategic Research, the Foundation for Internationalization of Higher Education and Research, the Knut and Alice Wallenberg Foundation, the Wallenberg Wood Science Centre, and through the Swedish government’s strategic initiative in new functional materials, AFM, at Linköping University.

    Facts: The terahertz range covers the wavelengths that lie between microwaves and infrared light on the electromagnetic spectrum. The waves have a width of between 0.1 and 1 millimetre and the frequency is at least 0.3 terahertz and at most 30 terahertz. 1 terahertz means that 1000 billion waves are sent or received in one second.


    Contact for scientific information:

    Shangzhi Chen, postdoc, shangzhi.chen@liu.se, +4611363490

    Chaoyang Kuang, postdoc, chaoyang.kuang@liu.se, +4611363467

    Magnus Jonsson, professor, magnus.jonsson@liu.se, +4611363403


    Original publication:

    Switchable Broadband Terahertz Absorbers Based on Conducting Polymer-Cellulose Aerogels; Chaoyang Kuang, Shangzhi Chen, Min Luo, Qilun Zhang, Xiao Sun, Shaobo Han, Qingqing Wang, Vallery Stanishev, Vanya Darakchieva, Reverant Crispin, Mats Fahlman, Dan Zhao, Qiye Wen, Magnus P. Jonsson; Advanced Science, published online November 23, 2023. DOI: 10.1002/advs.202305898


    More information:

    https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202305898
    https://www.expertsvar.se/en/pressmeddelanden/aerogel-can-become-the-key-to-futu...


    Images

    Criteria of this press release:
    Journalists
    Materials sciences, Physics / astronomy
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).