idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/09/2024 11:15

Tiny wires, maximum power: Nanowire contacts push the boundaries for high-performance electronics

Susann Thoma Presse- und Öffentlichkeitsarbeit
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

    Space comes at a premium on electronic chips: Powerful electronics need more and more connections, crammed into smaller and smaller spaces. Established technologies are reaching the limits of what is physically possible. Now, researchers at Fraunhofer IZM-ASSID have teamed up with other partners to level up a connection technology patented by NanoWired GmbH that uses wires at a nanometer scale. The team demonstrated how the novel technology could be used in the industrial production of 300 mm wafers.

    To guarantee efficiency and technological sovereignty in our digital future, the world needs high-performance supercomputers. In high-performance computing, data centers need to handle unimaginable amounts of data and conduct extremely complex calculations. This is essential whenever complicated operations need to be processed at high speed, such as scientific simulations or algorithms. Supercomputers are already being used to optimize traffic flows, logistics, industrial operations, and high-precision medical tasks. And high-performance computing is just one of the many applications that will need powerful, efficient, and reliable computing technology.

    Meeting these challenging demands needs new interconnection technologies. The basic idea is simple: The smaller the pitch, i.e. the space between electronic contacts, the more transistors and electronic circuits can be fitted on a chip and the more powerful the chip becomes. The old standard for flip-chip designs was to use copper bumps for soldering, but this technology is coming up against its physical limitations when the devices are shrunk more and more, as the solder can leak and cause short circuits in the system.

    Looking for innovative alternatives, junior professor Dr. Iuliana Panchenko and her team at Fraunhofer IZM-ASSID decided to try new interconnection techniques for contacts shrunk down to less than 10 micrometers. As part of the Fraunhofer-funded SME project “NanoInt”, they and their partners in industry and academia thought up a promising option that relies on copper nanowires and evaluated it successfully for use on 300mm silicon wafers.

    Compared to other options like copper soldering or solder bumps or hybrid and compression bonding, using a direct connection in the form of copper nanowires offers several advantages. The pluggable solution (nanowire to nanowire) means that designs with different heights can be realized. No other metal materials need to be used, the resulting system is mechanically robust, and it gives chip designers lots of freedom. The connections can be made at room temperature and with only limited bonding pressure, which makes the technology easy on resources and suitable for thin or heat-sensitive chips.

    During the first part of the project, the researchers focused on ways to grow the nanowires as evenly as possible at the contact points spread out across the entire 300 mm wafer. They managed to do so by using special membranes with tiny pores. These pores determine how thick the nanowire would become, and they can be varied for thicknesses from 100 nm to 1 µm. Finding the right pore diameter is crucial to establish a reliable and properly conductive connection. Once the membrane is in place, a galvanic process is started, and the copper nanowires can grow through the pores, with the lengths of the nanowires varying by approx. 20 percent as a result of tweaks to the process. The project team also developed the right process flow to protect the nanowires during etching, which is necessary to remove the conductive copper seeding layer from the wafer.

    The novel connection technology had to be evaluated for its practical feasibility, so the researchers tested how the process could be integrated in an industrial process chain. They defined the optimum parameters for assembling the systems and applied them in testing with particular attention to the technology’s reproducibility, homogeneity, mechanical robustness, and feasibility for industrial use.

    To mark the end of the project, the project partners produced a 300 mm silicon wafer with homogeneous nanowire bumps and nanowire connections in a chip-to-chip layout, showing how the technology could be integrated in 2.5D to 3D system designs without need for additional fluxing agents. The technology is already being rolled out into industrial use, and additional research projects are planned to shrink the contacts down to 10 or even 5 micrometers. In future, new applications for nanowires are possible for complex packages that use fine-pitch or larger contact areas.

    The partners on the “NanoInt” project included NanoWired GmbH, Fraunhofer IMWS, and the IAVT at the Technical University of Dresden.

    (Text: Olga Putsykina)


    Contact for scientific information:

    Jun.-Prof. Dr.-Ing. Iuliana Panchenko l Phone +49 351 795572-814l iuliana.panchenko@assid.izm.fraunhofer.de | Fraunhofer Institute for Reliability and Microintegration IZM-ASSID I Ringstr. 12 I 01468 Moritzburg | www.izm.fraunhofer.de |


    Original publication:

    https://www.izm.fraunhofer.de/en/news_events/tech_news/tiny-wires-maximum-power....


    Images

    Groundbreaking interconnection technology using 200 nm nanowires to realize tomorrow’s high-performance electronics.
    Groundbreaking interconnection technology using 200 nm nanowires to realize tomorrow’s high-performa ...

    Fraunhofer IZM

    close-up
    close-up

    Fraunhofer IZM


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Electrical engineering, Traffic / transport
    transregional, national
    Research projects, Research results
    English


     

    Groundbreaking interconnection technology using 200 nm nanowires to realize tomorrow’s high-performance electronics.


    For download

    x

    close-up


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).