Das Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS und die Ruhr-Universität Bochum haben gemeinsam ein Verfahren entwickelt, das eine neuartige Form der Signalverstärkung von diagnostischen Tests ermöglicht. Durch den fortschrittlichen Einsatz von leuchtenden Kohlenstoff-Nanoröhren in der Bioanalytik können Testverfahren sensitiver, schneller und günstiger durchgeführt werden. Die Sensoren lassen sich für enzymatische Verfahren nutzen. Durch ihre Anpassungsfähigkeit an verschiedene Reaktionsbedingungen eröffnet sich ein breites Anwendungsspektrum für Standardverfahren wie beispielsweise ELISAs, kurz für „Enzyme-linked Immunosorbent Assay“.
Die Ergebnisse wurden am 15. Dezember 2023 in der Zeitschrift „Angewandte Chemie International Edition“ veröffentlicht und eröffnen neue Möglichkeiten, diagnostische Verfahren zu verbessern und Nachweismittel einzusparen.
Diagnostische Grenzen lassen sich durch leuchtende Kohlenstoff-Sensoren verbessern
Bei vielen diagnostischen Verfahren wird Licht verwendet, um die Menge einer bestimmten Substanz nachzuweisen. Dabei kann es sich um farbige Stoffe oder aber leuchtende Substanzen handeln. Im Bereich des sichtbaren Lichts gibt es jedoch sehr viele Hintergrundsignale. Um das optische Signal einer Messung in einen besseren spektralen Bereich zu verschieben, nutzten die Forschenden Röhren aus Kohlenstoff mit einem Durchmesser von unter einem Nanometer. Das ist etwa 100.000-mal dünner als ein menschliches Haar. Die Sensoren fluoreszieren im für Menschen nicht sichtbaren und vorteilhaften nahen Infrarot und bleichen nicht. Zudem ist die Fluoreszenz der Sensoren durch die Modifikation auf ihrer Oberfläche sensitiv auf ihre chemische Umgebung. Dadurch ist es möglich, chemische Reaktionen zu beobachten und Reaktionsprodukte nachzuweisen, wenn diese mit der Nanoröhre interagieren.
Durch die Fluoreszenz der Nanoröhren wird das Signal dabei in das nahe Infrarot übertragen, was in Verbindung mit der hohen Sensitivität der Nanoröhren zu einer Verschiebung der Nachweisgrenze führt. Das ist zum Beispiel wichtig, wenn Krankheitsmarker bei einer Infektion oder einer Erkrankung, wie Krebs, in sehr niedrigen Konzentrationen vorliegen.
Verschiebung der Nachweisgrenze durch sensitive Nanosensoren
Durch die Fähigkeit, die Nanoröhren auf verschiedene Analyte anzupassen, ergeben sich vielfältige Möglichkeiten, wie unter anderem ein Sensitivitätsgewinn. Dieser Gewinn an Sensitivität ermöglicht eine potenzielle Verschiebung der Nachweisgrenzen, wodurch sowohl Material- als auch Zeitersparnisse in diagnostischen Prozessen erreicht werden können. Mithilfe des innovativen Ansatzes könnte sich die Effizienz von Nachweisverfahren in der medizinischen Diagnostik erheblich steigern lassen.
Sensor erkennt verschiedene Substrate
Dass das neue Sensorprinzip funktioniert, zeigte die Gruppe unter anderem anhand der Substrate p-Phenylendiamin und Tetramethylbenzidin für das Enzym Meerrettichperoxidase. „Dieses Enzym wird in einer Vielzahl von biochemischen Nachweismethoden genutzt“, erklärt Justus Metternich vom Fraunhofer IMS. „Im Prinzip lässt sich das Konzept aber auch auf alle möglichen Systeme übertragen. Wir haben zum Beispiel auch das Enzym β-Galaktosidase untersucht, da dieses für diagnostische Anwendungen interessant ist. Mit ein paar Anpassungen wären grundsätzlich auch Prozesse in Bioreaktionen möglich.“
In Zukunft will die Gruppe die Sensoren für weitere Anwendungen anpassen. Je nach Anwendung könnte man die Sensoren zum Beispiel mit sogenannten Quantendefekten stabiler machen. „Das wäre vor allem vorteilhaft, wenn man nicht nur in einfachen wässrigen Lösungen misst, sondern auch enzymatische Reaktionen in komplizierten Umgebungen mit Zellen, im Blut oder einem Bioreaktor selbst verfolgen will“, erklärt Sebastian Kruss, Professor für physikalische Chemie an der Ruhr-Universität Bochum und Leiter der Attract Gruppe Biomedical Nanosensors am Fraunhofer IMS.
Förderung
Die Arbeiten wurden durch das Fraunhofer Attract Programm (038–610097), die Deutsche Forschungsgemeinschaft im Rahmen des Exzellenzclusters RESOLV (EXC 2033–390677874) und die VW Stiftung gefördert.
Text: Lea Krammer, Fraunhofer IMS
Prof. Dr. Sebastian Kruss
Funktionale Grenzflächen und Biosysteme
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 29946
E-Mail: sebastian.kruss@ruhr-uni-bochum.de
Justus Metternich
Biomedical Nanosensors
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS
Tel.: +49 203 3783 331
E-Mail: justus.tom.metternich@ims.fraunhofer.de
Justus T. Metternich, Björn Hill, Janus A.C. Wartmann, Chen Ma, Rebecca M. Kruskop, Krisztian Neutsch, Svenja Herbertz, Sebastian Kruss: Signal Amplification and Near-Infrared Translation of Enzymatic Reactions by Nanosensors, in: Angewandte Chemie International Edition, 2023, DOI: 10.1002/anie.202316965, https://onlinelibrary.wiley.com/doi/10.1002/anie.202316965
Mit fluoreszierenden Nanoröhren können die Forschenden nachweisen, in welcher Menge bestimmte Stoffe ...
RUB, Marquard
Um die Fluoreszenz im Nahinfrarotbereich nachzuweisen, braucht es keine komplizierte Technik, wie di ...
RUB, Marquard
Criteria of this press release:
Journalists
Biology
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).