idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/06/2004 15:19

Laserblitze erhellen den Mikrokosmos

Josef Zens Unternehmenskommunikaton des Forschungsverbundes Berlin e.V.
Forschungsverbund Berlin e.V.

    Mit ultrakurzen Lichtpulsen erzeugen Forscher am MBI exotische Materiezustände

    Wir simulieren auf allerkleinstem Raum Verhältnisse, wie sie im Inneren einer Sonne herrschen. So umschreibt Dr. Matthias Schnürer vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie seine Arbeit. Diese Versuche sind Teil eines neuen Sonderforschungsbereiches, den die DFG kürzlich bewilligt hat. Der Sonderforschungsbereich/Transregio heißt Relativistische Laser-Plasma-Dynamik , seine Besonderheit ist, dass er über drei Universitäten (Düsseldorf, München, Jena) und zwei außeruniversitäre Institute (Max-Planck-Institut für Quantenoptik, Garching, und Max-Born-Institut Berlin) verteilt ist. Sprecher ist Professor Dr. Oswald Willi von der Heinrich-Heine-Universität Düsseldorf.

    Warum relativistisch? Licht ist ein elektromagnetisches Wechselfeld, das geladene Teilchen, also auch Elektronen, beschleunigen kann. Unser Laserlicht ist so stark, dass Elektronen in diesem Feld selbst bis auf Lichtgeschwindigkeit beschleunigt werden und das, obwohl sie in einer Millionstel Sekunde hundert Millionen mal ihre Bewegungsrichtung umkehren, eine schwindelerregende Karussellfahrt. Eine solche Bewegung kann nur noch mit Einsteins Relativitätstheorie beschrieben werden, erläutert der Berliner Forscher Matthias Schnürer, daher nennen wir sie relativistisch. Selbst wenn Elektronen extrem leicht sind und daher leicht beschleunigt werden können, benötigt man für relativistische Bewegungen enorme Lichtleistungen. Zurzeit erzeugen die Wissenschaftler in dem Höchstleistungs-Laserlabor des MBI kurzfristig Lichtleistungen von vielen Milliarden Kilowatt. Zum Vergleich: Das Blitzlicht eines Fotoapparats setzt kurzfristig tausend Watt frei, also ein Kilowatt. Ein Kilo Sprengstoff (TNT) liegt bei einer Million Watt, das ist ein Megawatt. Ein Blitz bei einem Gewitter kommt immerhin schon auf eine Billion Watt (10 hoch zwölf oder ein Terawatt, eine Milliarde Kilowatt). Der Hochleistungslaser am MBI schafft derzeit 25 Terawatt, 100 Terawatt sind demnächst vorgesehen. Anders ausgedrückt: Die MBI-Forscher setzen kurzfristig mehr Lichtleistung frei als alle Kraftwerke der Welt im Dauerbetrieb erzeugen. Und sie können dennoch die Stromrechnung bezahlen. Denn diese immense Energiedichte dauert nur extrem kurz. Die Zeitskala ist dabei ebenso unvorstellbar klein wie die Leistungsskala groß: Unsere Pulse dauern etwa dreißig Femtosekunden, sagt Schnürer. Eine Femtosekunde ist der milliardste Teil einer Millionstelsekunde. Außerdem ist die Fläche sehr klein, die bestrahlt wird. Wir fokussieren den Strahl auf wenige Mikrometer Durchmesser, sagt Schnürer, also wenige tausendstel Millimeter.

    In diesem Kosmos von wenigen Kubikmikrometern Raum entsteht dann ein Plasma mit extrem schnellen Teilchen. Schnürer: Wichtige Fragen für uns sind: Wie wird Energie in solch relativistischen Plasmen transportiert? Wie funktioniert überhaupt so ein Plasma? Um das herauszufinden, bedienen sich die Forscher eines Kniffs. Sie nutzen Eigenschaften des relativistischen Plasmas, um das Plasma selbst zu untersuchen. Der exotische Materiezustand führt nämlich dazu, dass nicht nur Elektronen, sondern auf Umwegen auch die viel schwereren Protonen beschleunigt werden ein Protonenstrahl entsteht. Diese positiv geladenen Bestandteile eines Atomkerns, die in einem lasererzeugten Plasma entstehen, werden durch ein zweites, benachbartes Plasma geschossen und darin abgelenkt. Wir untersuchen diese Ablenkung, berichtet Schnürer, und gewinnen daraus wichtige Erkenntnisse über die Vorgänge im Inneren des Plasmas. Es ist wie ein kleines kosmisches Labor, in dem Energieflüsse simuliert und sogar gemessen werden können, die in Sternen eine Rolle spielen. Allerdings braucht man dazu zwei getrennte Plasmen. Am MBI werden sie mit Hilfe zweier verschiedener Höchstleistungslaser erzeugt, die innerhalb von Bruchteilen von milliardstel Sekunden gleichzeitig feuern eine Spezialität, die in Deutschland und Europa einmalig ist und die das MBI zu einem begehrten Kooperationspartner für solche Experimente macht.

    Neben solch grundlegenden Fragen gibt es jedoch auch anwendungsnahe Aspekte. Denn der erzeugte Protonenpuls kann auch zur Strukturuntersuchung von ganz normaler Materie, Festkörper oder gar biologische Moleküle, genutzt werden. Zwar ist seine Pulsdauer weit kürzer als die Pulsdauer von Protonenstrahlen aus großen Teilchenbeschleunigern und Forschungsreaktoren, doch dafür ist der Strahl viel dichter. Außerdem braucht man keine dieser Megamaschinen, um den Protonenstrahl zu erzeugen. Die Laseranlage im MBI ist zwar beeindruckend groß, doch die kurzen Lichtpulse lassen sich im Prinzip auf zwei großen Labortischen erzeugen. So könnte es bei fortschreitender Miniaturisierung analog zum Tisch-Computer demnächst auch einen Tisch-Beschleuniger geben.

    Ansprechpartner:

    Dr. Matthias Schnürer
    Tel.: 030 / 63 92 1315
    schnuerer@mbi-berlin.de

    Dr. Peter Nickles
    Tel.: 030 / 6392 1310
    nickles@mbi-berlin.de

    Das Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie betreibt Grundlagenforschung auf dem Gebiet der nichtlinearen Optik und Kurzzeitdynamik bei Wechselwirkung von Materie mit Laserlicht und verfolgt daraus resultierende Anwendungsaspekte. Schwerpunkte des Forschungsprogramms sind die Realisierung neuer Quellen für ultrakurze und ultraintensive Lichtimpulse und deren Einsatz in Physik, chemischer Physik und Materialforschung. Das MBI ist in zahlreiche nationale und internationale Kooperationen eingebunden und wird von der Europäischen Union als Large Scale Laser Facility gefördert.
    www.mbi-berlin.de

    Im Forschungsverbund Berlin (FVB) sind acht natur-, umwelt- und lebenswissenschaftlich orientierte Institute zusammengeschlossen, die wissenschaftlich eigenständig sind, aber im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen. Alle Institute des FVB gehören zur Leibniz-Gemeinschaft.
    www.fv-berlin.de

    - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Forschungsverbund Berlin e.V.
    Presse- und Öffentlichkeitsarbeit
    Rudower Chaussee 17
    12489 Berlin
    Tel.: +49-30-6392-3338 (Fax: -3333)
    zens@fv-berlin.de
    http://www.fv-berlin.de


    Images

    Criteria of this press release:
    Electrical engineering, Energy, Information technology, Mathematics, Physics / astronomy
    transregional, national
    Organisational matters, Research projects
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).