Altermagnetic CrSb with promising characteristics for electronic applications
Altermagnets represent a newly recognized class of materials in magnetism that could enable novel applications in spin-based electronics. Their magnetically ordered state consists of an antiparallel arrangement of microscopic magnetic moments, so-called spins, as in antiferromagnets. In contrast to antiferromagnetism, however, the altermagnetic state with zero net-magnetization enables the generation of electrical currents with spin polarization, as required in spin-based electronics. Thus, altermagnets combine the advantages of antiferromagnets, i.e., ultrafast dynamics, and ferromagnets, i.e., large spin polarization.
In collaboration with a theoretical team led by Professor Jairo Sinova and Dr. Libor Šmejkal, experimental physicist Dr. Sonka Reimers and her colleagues in Professor Mathias Kläui's lab at the Institute of Physics at Johannes Gutenberg University Mainz (JGU) have demonstrated altermagnetic electronic band splitting associated with spin polarization in CrSb. "The magnitude of this spitting, observed in a good conductor and at room temperature, is extraordinary and promising with regard to electronic applications of altermagnetic materials", said Professor Martin Jourdan, coordinator of the study recently published in Nature Communications.
Image:
https://download.uni-mainz.de/presse/08_physik_komet_altermagnetismus_crsb.jpg
The crystal structure of altermagnetic CrSb: the colored bubbles around the Cr atoms (blue) correspond to iso-spin density surfaces. Their anisotropy enables spin polarized currents.
ill./©: Libor Šmejkal and Anna Birk Hellenes / JGU
Related links:
• https://www.klaeui-lab.physik.uni-mainz.de/ – Kläui Lab at the JGU Institute of Physics
• https://www.blogs.uni-mainz.de/fb08-iph-eng/ – JGU Institute of Physics
Read more:
• https://press.uni-mainz.de/scientists-directly-observed-altermagnetism/ – press release "Scientists directly observed altermagnetism" (19 Feb. 2024)
• https://press.uni-mainz.de/altermagnetism-experimentally-demonstrated/ – press release "Altermagnetism experimentally demonstrated" (15 Feb. 2024)
• https://press.uni-mainz.de/efficient-read-out-in-antiferromagnetic-spintronics/ – press release "Efficient read-out in antiferromagnetic spintronics" (25 Nov. 2021)
• https://press.uni-mainz.de/detecting-damage-in-non-magnetic-steel-with-the-help-... – press release "Detecting damage in non-magnetic steel with the help of magnetism" (24 July 2018)
• https://press.uni-mainz.de/antiferromagnets-prove-their-potential-for-spin-based... – press release "Antiferromagnets prove their potential for spin-based information technology" (29 Jan. 2018)
Professor Dr. Martin Jourdan
Condensed Matter Physics
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone: +49 6131 39-23635
e-mail: jourdan@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/martin-jourdan/
S. Reimers et al., Direct observation of altermagnetic band splitting in CrSb thin films, Nature Communications, 8 March 2024,
DOI: 10.1038/s41467-024-46476-5
https://www.nature.com/articles/s41467-024-46476-5
The crystal structure of altermagnetic CrSb: the colored bubbles around the Cr atoms (blue) correspo ...
ill./©: Libor Šmejkal and Anna Birk Hellenes / JGU
Criteria of this press release:
Journalists, Scientists and scholars, all interested persons
Electrical engineering, Energy, Information technology, Materials sciences, Physics / astronomy
transregional, national
Research results, Scientific Publications
English
The crystal structure of altermagnetic CrSb: the colored bubbles around the Cr atoms (blue) correspo ...
ill./©: Libor Šmejkal and Anna Birk Hellenes / JGU
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).