idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/12/2024 11:05

Innovative Antiviral Defense With New CRISPR Tool

Céline Gravot-Schüppel Kommunikation
Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)

    The rise of RNA viruses like SARS-CoV-2 highlights the need for new ways to fight them. RNA-targeting tools like CRISPR/Cas13 are powerful but inefficient in the cytoplasm of cells, where many RNA viruses replicate. Scientists from Helmholtz Munich and the Technical University Munich (TUM) have devised a solution: Cas13d-NCS. This new molecular tool allows CRISPR RNA molecules that are located within the nucleus of a cell to move to the cytoplasm, making it highly effective at neutralizing RNA viruses. This advancement opens doors for precision medicine and proactive viral defense strategies. The findings were published in Cell Discovery.

    As the world prepares for future and ongoing global health threats from RNA viruses such as the SARS-CoV-2 pandemic, breakthrough advances in antiviral development are becoming a critical weapon in the fight against these infectious diseases. At the heart of this innovation is the exploration of CRISPR/Cas13 systems, which are known for their programmable capabilities to manipulate RNAs and have become indispensable tools for various RNA targeting applications. However, a significant obstacle has hampered the effectiveness of Cas13d: its restriction to the nucleus of mammalian cells. This drastically limited its utility in cytosolic applications, such as programmable antiviral therapies.

    A Potent Antiviral Solution

    A scientific team around Prof. Wolfgang Wurst, Dr. Christoph Gruber and Dr. Florian Giesert (Institute of Developmental Genetics at Helmholtz Munich and Chair of Developmental Genetics at TUM), which intensively collaborated with the teams of Dr. Gregor Ebert (Institute of Virology at Helmholtz Munich and at TUM) and of Prof. Andreas Pichlmair (Institute of Virology at TUM), successfully overcame this challenge associated with the cytosolic inactivity of Cas13d. Through careful screening and optimization, the researchers developed a transformative solution: Cas13d-NCS, a novel system capable of transferring nuclear crRNAs into the cytosol. crRNAs, or CRISPR RNAs, are short RNA molecules that guide the CRISPR-Cas complex to specific target sequences for precise modifications. In the cytosol, the protein/crRNA complex targets complementary RNAs and degrades them with unprecedented precision. With remarkable efficiency, Cas13d-NCS outperforms its predecessors in degrading mRNA targets and neutralizing self-replicating RNA, including replicating sequences of Venezuelan equine encephalitis (VEE) RNA virus and several variants of SARS-CoV-2, unlocking the full potential of Cas13d as a programmable antiviral-tool.

    Redefining the Landscape of RNA Virus Therapeutics

    This important achievement represents a significant step towards combating pandemics and strengthening defenses against future outbreaks. The impact of the study goes beyond traditional antiviral strategies and CRISPR systems and ushers in a new era of precision medicine by enabling the strategic manipulation of subcellular localization of CRISPR-based interventions.

    “This breakthrough in antiviral development with Cas13d-NCS marks a pivotal moment in our ongoing battle against RNA viruses,” says Prof. Wolfgang Wurst, coordinator of the study. “This achievement showcases the power of collaborative innovation and human ingenuity in our quest for a healthier and more resilient world.”

    About the scientist
    Prof. Wolfgang Wurst, Director of the Institute of Developmental Genetics at Helmholtz Munich, Head of of the Chair of Developmental Genetics at TUM, partner of the German Center for Neurodegenerative Diseases (DZNE) and member of the Munich Cluster for Systems Neurology (SyNergy)

    About Helmholtz Munich
    Helmholtz Munich is a leading biomedical research center. Its mission is to develop breakthrough solutions for better health in a rapidly changing world. Interdisciplinary research teams focus on environmentally triggered diseases, especially the therapy and prevention of diabetes, obesity, allergies, and chronic lung diseases. With the power of artificial intelligence and bioengineering, researchers accelerate the translation to patients. Helmholtz Munich has more than 2,500 employees and is headquartered in Munich/Neuherberg. It is a member of the Helmholtz Association, with more than 43,000 employees and 18 research centers the largest scientific organization in Germany. More about Helmholtz Munich (Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH): www.helmholtz-munich.de/en


    Contact for scientific information:

    wolfgang.wurst@helmholtz-munich.de


    Original publication:

    Gruber et al., 2024: Engineered, nucleocytoplasmic shuttling Cas13d enables highly efficient cytosolic RNA targeting. Cell Discovery. DOI: 10.1038/s41421-024-00672-1
    https://www.nature.com/articles/s41421-024-00672-1


    Images

    Treatment with Cas13d-NCS prevents the spread of SARS-CoV-2 (green)
    Treatment with Cas13d-NCS prevents the spread of SARS-CoV-2 (green)
    Wolfgang Wurst
    Wolfgang Wurst


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Treatment with Cas13d-NCS prevents the spread of SARS-CoV-2 (green)


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).