idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/03/2024 12:12

Auf dem Weg zu Wasserstoff aus Algenenzymen

Meike Drießen Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

    Manche Algen sind in der Lage, unter bestimmten Bedingungen Wasserstoff herzustellen, einen begehrten grünen Energieträger. Seine Herstellung läuft im einzigartigen katalytischen Zentrum der einzelligen Algen ab und funktioniert nur, wenn auch entsprechende Kofaktoren der verantwortlichen Proteine anwesend sind. Den Zusammenbau eines solchen Kofaktors, des sogenannten Wasserstoff-Clusters, konnten Forschende der Ruhr-Universität Bochum aufklären. Sie beschreiben insbesondere die bisher ungeklärte Rolle des Enzyms HydF, das an den letzten Schritten des Zusammenbaus beteiligt ist, in der Zeitschrift Journal of the American Chemical Society (JACS) vom 31. Mai 2024.

    Liganden am Cluster machen Wasserstoffproduktion erst möglich

    „Eisen-Schwefel ([FeS])-Cluster sind essenzielle, weitverbreitete Protein-Kofaktoren, welche unterschiedlichste Funktionen in der Zelle einnehmen“, erklärt Erstautorin Rieke Haas aus der Arbeitsgruppe Photobiotechnologie der Ruhr-Universität Bochum von Prof. Dr. Thomas Happe. Zum Beispiel sind sie an der Katalyse von chemischen Reaktionen, dem Transfer von Elektronen, dem Wahrnehmen von sich ändernden Umgebungsbedingungen oder der Synthese anderer komplexer Metallkofaktoren beteiligt.

    Auch die Wasserstoff-produzierenden [FeFe]-Hydrogenasen der Algen besitzen ein [FeS]-Cluster – das einzigartige katalytische Zentrum. Es ermöglicht die Produktion des grünen Energieträgers Wasserstoff unter milden Reaktionsbedingungen und ist somit ein wichtiger Forschungsschwerpunkt der zukunftsorientierten Energiegewinnung. „Ihr Kofaktor besitzt neben Eisen- und Schwefelatomen weitere Liganden, welche den Umsatz von Wasserstoff erst ermöglichen“, erläutert Rieke Haas. „Somit benötigt die Biosynthese des Kofaktors eine komplexe Abfolge verschiedener Syntheseschritte, um alle benötigten Komponenten bereitzustellen.“ Dafür braucht der Organismus einen auf diesen Prozess zugeschnittenen Biosynthese-Apparat, welcher unter anderem drei Enzyme beinhaltet, die für die Hauptsyntheseschritte verantwortlich sind. Besonders die Rolle des Enzyms HydF, welches an den letzten Schritten des Zusammenbaus beteiligt ist, war bisher in großen Teilen ungeklärt.

    Die Rolle einzelner Aminosäuren

    Mittels ortsspezifischer Mutagenese konnten die Forschenden neue Erkenntnisse darüber gewinnen, wie der Kofaktor-Vorläufer in das Enzym integriert wird und wie einzelne Aminosäuren an der Verankerung und Synthese beteiligt sind. Dabei spielt HydF eine Rolle während der Synthese eines Liganden, der essenziell für die Anlieferung von Protonen für den Wasserstoffumsatz ist. Mittels Methoden wie Wasserstoffproduktionsmessungen und ATR-FTIR-Spektroskopie gewann das Team einen detaillierten Einblick in die Funktionsweise von HydF und besonders die Rolle spezifischer Aminosäuren. Die neuen Erkenntnisse bieten Einblicke in die bisher unbekannte Funktionsweise des Reifungsenzyms HydF und können somit helfen, die Biosynthese des einzigartigen Kofaktors von [FeFe]-Hydrogenasen besser zu verstehen.

    Förderung

    Die Arbeiten wurden unterstützt von der Deutschen Forschungsgemeinschaft im Rahmen der Exzellenzinitiative des Bundes und der Länder (Exzellenzcluster RESOLV) und der VolkswagenStiftung.


    Contact for scientific information:

    Prof. Dr. Thomas Happe
    Arbeitsgruppe Photobiotechnologie
    Fakultät für Biologie und Biotechnologie
    Ruhr-Universität Bochum
    Tel.: +49 234 32 27026
    E-Mail: thomas.happe@ruhr-uni-bochum.de


    Original publication:

    Rieke Haas, Oliver Lampret, Shanika Yadav, Ulf-Peter Apfel, Thomas Happe: A Conserved Binding Pocket in HydF is Essential for Biological Assembly and Coordination of the Diiron Site of [FeFe]-Hydrogenases, in: JACS, 2024, DOI: 10.1021/jacs.4c01635, https://pubs.acs.org/doi/10.1021/jacs.4c01635


    Images

    Thomas Happe, Rieke Haas und Ulf-Peter Apfel (von links) untersuchten das katalytische Zentrum der Algen im Detail, um die Voraussetzungen für die Wasserstoffherstellung besser zu verstehen.
    Thomas Happe, Rieke Haas und Ulf-Peter Apfel (von links) untersuchten das katalytische Zentrum der ...

    © RUB, Marquard


    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research results, Scientific Publications
    German


     

    Thomas Happe, Rieke Haas und Ulf-Peter Apfel (von links) untersuchten das katalytische Zentrum der Algen im Detail, um die Voraussetzungen für die Wasserstoffherstellung besser zu verstehen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).