idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/22/2024 09:48

Den Wasserstoffperoxid-Ertrag aus der Wasserelektrolyse maximieren

Dr. Julia Weiler Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

    Aufgrund seiner hohen Verfügbarkeit gilt Wasser als sinnvollster Ausgangsstoff für die Wasserstoffgewinnung. Idealerweise entsteht bei der Umsetzung von Wasser zu Wasserstoff eine zweite nützliche Substanz: Wasserstoffperoxid, das für viele Industriezweige benötigt wird, etwa für die Produktion von Desinfektionsmitteln. Um Wasserstoffperoxid aus der Spaltung von Wasser zu gewinnen, braucht es besondere Reaktionsbedingungen. Bekannt war, dass die Anwesenheit von Carbonat nützlich ist. Aber warum das so ist, war unklar. Ein Team der Ruhr-Universität Bochum hat den Mechanismus dahinter aufgeklärt.

    Die Gruppe um Dr. Lejing Li, Dr. Carla Santana Santos und Prof. Dr. Wolfgang Schuhmann vom Bochumer Zentrum für Elektrochemie beschreibt die Ergebnisse in der Zeitschrift „Angewandte Chemie International Edition“ vom 24. Juni 2024.

    Zwei Fliegen mit einer Klappe schlagen

    „Wasserstoffperoxid ist ein Wertstoff, der mit komplexen Verfahren hergestellt werden muss, die auch für die Umwelt nicht immer unbedenklich sind“, sagt Wolfgang Schuhmann. Da wäre es nützlich, wenn man die Substanz in großen Mengen aus der elektrolytischen Spaltung von Wasser gewinnen könnte, bei der zugleich der Energieträger Wasserstoff entsteht. „Das ist allerdings thermodynamisch kompliziert“, erklärt Lejing Li. Denn die Entstehung von Sauerstoff ist sozusagen energetisch einfacher.

    Fügt man jedoch einen Carbonat-Puffer zur Lösung hinzu, ändert sich die Lage. Dabei handelt es sich um Kohlensäure (H2CO3), welche ein Proton (H+) abgeben kann, sodass Hydrogencarbonat (HCO3-) entsteht, welches zu Kohlendioxid (CO2) weiterreagieren kann. Solche Puffer helfen, den pH-Wert von Lösungen stabil zu halten. Allerdings sind die Bedingungen in der Reaktionslösung nicht überall identisch.

    Die Umsetzung von Wasser zu Wasserstoff und Sauerstoff findet an den Oberflächen zweier Elektroden statt, zwischen denen eine Spannung anliegt. Bei der Übertragung von negativ geladenen Elektronen werden zugleich positiv geladene Protonen frei. Die Protonen verändern den pH-Wert in der unmittelbaren Umgebung der Elektrode, während weiter entfernt in der Lösung der pH-Wert stabil bleibt.

    Lokale pH-Wert-Messungen

    Mithilfe einer selbst entwickelten Methode bestimmte das Bochumer Team den pH-Wert in der unmittelbaren Umgebung der Elektrode unter unterschiedlichen Reaktionsbedingungen und zeigte, dass Wasserstoffperoxid bevorzugt dann entsteht, wenn viel Hydrogencarbonat in der Nähe der Elektrode vorhanden ist. Unter diesen Bedingungen bildet sich ein Reaktionszwischenprodukt, das die Entstehung von unerwünschtem Sauerstoff verhindert.

    „Diese Ergebnisse klingen zunächst nach abstrakter Grundlagenforschung“, gibt Lejing Li zu. „Aber die Produktion von Wasserstoff und Wasserstoffperoxid ist extrem wichtig. Nur wenn wir die Prozesse genau verstehen, können wir sie besser machen.“

    Förderung

    Die Arbeiten wurden finanziell unterstützt vom Bundesministerium für Forschung und Technologie im Rahmen des Projekts „DERIEL“ (Förderkennzeichen 03HY122H), vom Europäischen Forschungsrat im Rahmen des Horizon-2020-Programms der Europäischen Union (CasCat, 833408) und vom Europäischen Innovationsrat im Rahmen des Grant Agreements 101046742 (MeBattery). Weitere Förderung kam von der Deutschen Forschungsgemeinschaft im Rahmen der Forschungsgruppe 2982 (Fördernummer 413163866).


    Contact for scientific information:

    Prof. Dr. Wolfgang Schuhmann
    Analytische Chemie – Zentrum für Elektrochemie (CES)
    Fakultät für Chemie und Biochemie
    Ruhr-Universität Bochum
    Tel.: +49 234 32 26200
    E Mail: wolfgang.schuhmann@ruhr-uni-bochum.de


    Original publication:

    Lejing Li, Rajini P. Antony, Carla Santana Santos, Ndrina Limani, Stefan Dieckhöfer, Wolfgang Schuhmann: Anodic H2O2 Generation in Carbonate-based Electrolytes – Mechanistic Insight from Scanning Electrochemical Microscopy, in: Angewandte Chemie International Edition, 2024, DOI: 10.1002/anie.202406543, https://onlinelibrary.wiley.com/doi/10.1002/anie.202406543


    Images

    „Die Produktion von Wasserstoff und Wasserstoffperoxid ist extrem wichtig“, sagt Erstautorin Lejing Li.
    „Die Produktion von Wasserstoff und Wasserstoffperoxid ist extrem wichtig“, sagt Erstautorin Lejing ...

    RUB, Marquard

    Lejing Li, Wolfgang Schuhmann und Carla Santana Santos vom Bochumer Zentrum für Elektrochemie (von links)
    Lejing Li, Wolfgang Schuhmann und Carla Santana Santos vom Bochumer Zentrum für Elektrochemie (von l ...

    RUB, Marquard


    Criteria of this press release:
    Journalists
    Chemistry
    transregional, national
    Research results, Scientific Publications
    German


     

    „Die Produktion von Wasserstoff und Wasserstoffperoxid ist extrem wichtig“, sagt Erstautorin Lejing Li.


    For download

    x

    Lejing Li, Wolfgang Schuhmann und Carla Santana Santos vom Bochumer Zentrum für Elektrochemie (von links)


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).