idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/05/2024 09:30

Transparent Electronics: 45 Percent Transparency achieved in Microdisplays

Julia Schulze Marketing & Kommunikation
Fraunhofer-Institut für Photonische Mikrosysteme (IPMS)

    Researchers from the Fraunhofer Institute for Photonic Microsystems IPMS
    have significantly increased the transparency of OLED microdisplays. For the
    first time, a microdisplay of this kind will be presented at booth No. 38 at the
    "International Meeting on Information Display" (IMID) 2024 in Jeju, South
    Korea.

    Transparent electronics are already providing reliable services in some applications. For
    instance, they can be found as ultra-thin layers for touch displays or as transparent
    films with printed antennas for mobile communications. However, OLED microdisplays
    have not been transparent so far.
    As part of the HOT project (“High-performance transparent and flexible microelectronics
    for photonic and optical applications,” funding number MAVO 840092)
    funded by the Fraunhofer Society, OLED microdisplays with 20% transparency were
    developed. The technology has now been advanced further, and for the first time,
    45% transparency has been achieved in a CMOS OLED microdisplay.

    What causes this improvement?

    The OLED-on-silicon technology uses a silicon backplane that contains the entire active
    matrix drive electronics for the pixels. The organic frontplane is monolithically
    integrated on the topmost metallization layer, which simultaneously serves as the drive
    contact for the organic light-emitting diode. The second connection of the OLED is
    formed by a semi-transparent top electrode shared by all pixels. The pixel circuitry is
    based on silicon CMOS technology and requires several metal layers to connect the
    transistors embedded in the substrate. These metal connections are made of aluminum
    or copper. Additionally, the optical structure of the OLED requires a highly reflective
    bottom electrode to ensure high optical efficiency upwards. These two aspects result in
    the pixels themselves not being transparent.
    "A transparent microdisplay, however, can be realized through a spatially distributed
    design of this basic pixel structure, creating transparent areas between the pixels and
    minimizing column and row wiring," explains Philipp Wartenberg, group leader of IC
    and system design at Fraunhofer IPMS, "further optimization of the OLED layers, for
    example by avoiding OLED layers in the transparent areas, introducing anti-reflective
    coatings, and redesigning the wiring also contributes to increasing transparency."

    There are two fundamental methods to achieve semi-transparency in optical systems:

    1. Pixel approach: This involves creating transparent areas between individual
    pixels.
    2. Cluster approach: This method groups several pixels into a larger, nontransparent
    cluster. Larger transparent areas are created between these clusters.

    Both approaches are relevant for different applications in practice. The pixel approach
    is suitable, for example, for image overlay within a complex optical system, where the
    image is inserted between other image planes.
    The cluster approach is particularly suitable for augmented reality (AR) applications,
    such as in data glasses, where the pixel clusters are combined into a uniform virtual
    image using a micro-optic over each cluster. The transparent areas between the clusters remain unaffected by the optics, allowing a clear view of the real environment. The technology for transparent microdisplays was developed to support both techniques. The microdisplay presented at IMID showcases the cluster approach with a new AR optic.

    Optical Approach

    The optical combination of the individual pixel clusters into a uniform virtual image was
    realized through a microlens array. The optics were designed to enable a setup close to
    the eye with a similar distance to the eye as regular corrective glasses.

    Fraunhofer IPMS at IMID 2024:
    Booth: No. 38

    Presentations:
    Philipp Wartenberg: “CMOS Integrated Circuitry Active-Matrix Backplane Design for
    High-Resolution XR Microdisplays” invited
    Session Title: 02. Special Session II: High Resolution Frontplane Technologies for XR I
    Session Running Time and Date: 09:00-10:30 / Aug. 21 (Wed.), 2024
    Presentation Time: 09:00-09:25
    Session Room: Room B (Hall B)

    Dr. Uwe Vogel: „Semi-transparent CMOS backplane for advanced near-to-eye
    microdisplays”
    Session Title: 04. Recent Developments in AR/VR/MR Displays
    Session Running Time and Date: 09:00-10:20 / Aug. 21 (Wed.), 2024
    Presentation Time: 09:50-10:05
    Session Room: Room D (301)

    Poster:
    Paper No.: 15_1213
    “High Brightness Monochrome OLED Stacks for Micro-Display Applications”
    Authors: Johannes Zeltner, Simone Lenk, Michael Toerker, Karsten Fehse, Bernd
    Richter, Philipp Wartenberg, and Uwe Vogel (Fraunhofer Inst. for Photonic
    Microsystems IPMS, Germany)

    Poster Session 1, 13:20-14:50 / Aug. 21 (Wed.), 2024
    Other Publications:
    • Philipp Wartenberg, Bernd Richter, Stephan Brenner, Johannes Zeltner,
    Christian Schmidt, Judith Baumgarten, Andreas Fritscher, Simone Lenk, Martin
    Rolle, Michael Törker, Uwe Vogel, "High-brightness OLED-on-silicon on
    semitransparent CMOS backplane for advanced near-to-eye microdisplays,"
    Proc. SPIE 12624, Digital Optical Technologies 2023, 1262416 (7 August
    2023); https://doi.org/10.1117/12.2675479
    • SID 2024 (publication pending): A new semi-transparent OLED-on-Silicon
    microdisplay technology enabling new optical design opportunities for slim
    near-to-eye optics

    ----
    About the HOT Project (High-performance Transparent and Flexible Micro-Electronics
    for Photonic and Optical Applications):
    This work was funded within a Fraunhofer internal program under funding number
    MAVO 840092. Additionally, the researchers were supported by Fraunhofer IOF in
    micro-optics.

    ----
    About Fraunhofer IPMS
    Fraunhofer IPMS is one of the leading international research and development service
    providers for electronic and photonic microsystems in the application fields of
    intelligent industrial solutions and manufacturing, medical technology and health, and
    mobility. In three state-of-the-art clean rooms and with a total of four development
    sites in Dresden, Cottbus and Erfurt, the institute develops innovative MEMS
    components and microelectronic devices on 200 mm and 300 mm wafers. Services
    range from consulting and process development to pilot production.


    Contact for scientific information:

    Philipp Wartenberg - philipp.wartenberg@ipms.fraunhofer.de


    Images

    Transparent OLED microdisplay device
    Transparent OLED microdisplay device

    © Fraunhofer IPMS

    Transparent OLED microdisplay
    Transparent OLED microdisplay

    © Fraunhofer IPMS


    Criteria of this press release:
    Journalists
    Electrical engineering, Materials sciences, Physics / astronomy
    transregional, national
    Research results
    English


     

    Transparent OLED microdisplay device


    For download

    x

    Transparent OLED microdisplay


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).