idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/15/2024 15:12

Bahnbrechende Präzision in der Einzelmolekül-Optoelektronik

Dr. Jelena Tomovic Presse- und Öffentlichkeitsarbeit
Fritz-Haber-Institut der Max-Planck-Gesellschaft

    Wissenschaftler*innen der Abteilung für Physikalische Chemie am Fritz-Haber-Institut haben eine innovative Entdeckung in der nanoskaligen Optoelektronik gemacht, wie in ihrer kürzlich in Nature Communications veröffentlichten Studie beschrieben. Die Studie mit dem Titel „Atomic-Precision Control of Plasmon-Induced Single-Molecule Switching in a Metal–Semiconductor Nanojunction“ stellt eine bahnbrechende Methode vor, um eine beispiellose Kontrolle über das Photoschalten einzelner Moleküle zu erreichen. Dieser Durchbruch könnte die Zukunft der Nanotechnologie revolutionieren.

    Die nanoskalige Optoelektronik ist ein schnell fortschreitendes Feld, das sich auf die Entwicklung elektronischer und photonischer Geräte im Nanometerbereich konzentriert. Diese winzigen Geräte haben das Potenzial, die Technologie zu revolutionieren, indem sie Komponenten schneller, kleiner und energieeffizienter machen. Eine präzise Kontrolle über Photoreaktionen auf atomarer Ebene ist entscheidend für die Verkleinerung und Optimierung dieser Geräte. Lokalisierte Oberflächenplasmonen (LSPs), das sind Lichtwellen, die auf nanoskaligen Materialoberflächen erzeugt werden, haben sich in diesem Bereich als leistungsstarke Werkzeuge erwiesen, die elektromagnetische Felder konzentrieren und verstärken können. Bisher war die Anwendung von LSPs hauptsächlich auf metallische Strukturen beschränkt, was das Team als Einschränkung für die Verkleinerung der Optoelektronik vorhersagte.
    Jenseits der Nanoskala: Atomgenaue Kontrolle des Photoschaltens

    Diese bahnbrechende Forschung konzentriert sich auf die Nutzung von LSPs, um chemische Reaktionen auf atomarer Ebene zu steuern. Das Team hat die Funktionalität von LSPs erfolgreich auf Halbleiterplattformen ausgeweitet. Durch die Verwendung einer plasmonresonanten Spitze in einem Tieftemperatur-Rastertunnelmikroskop ermöglichten sie das reversible Anheben und Absenken einzelner organischer Moleküle auf einer Siliziumoberfläche. Der LSP an der Spitze induziert das Brechen und Bilden spezifischer chemischer Bindungen zwischen dem Molekül und dem Silizium, was zu einem reversiblen Schalten führt. Die Schaltgeschwindigkeit kann durch die Position der Spitze mit außergewöhnlicher Präzision bis zu 0,01 Nanometern eingestellt werden. Diese präzise Manipulation ermöglicht reversible Änderungen zwischen zwei verschiedenen molekularen Konfigurationen.

    Ein weiterer wichtiger Aspekt dieses Durchbruchs ist die Einstellbarkeit der optoelektronischen Funktion durch molekulare Modifikation auf atomarer Ebene. Das Team bestätigte, dass das Photoschalten für ein anderes organisches Molekül gehemmt ist, bei dem nur ein Sauerstoffatom, das nicht an Silizium bindet, durch ein Stickstoffatom ersetzt wurde. Diese chemische Anpassung ist entscheidend für die Abstimmung der Eigenschaften von Einzelmolekül-Optoelektronikgeräten und ermöglicht das Design von Komponenten mit spezifischen Funktionen, was den Weg für effizientere und anpassungsfähigere nano-optoelektronische Systeme ebnet.
    Zukünftige Richtungen

    Diese Forschung adressiert ein kritisches Hindernis bei der Weiterentwicklung nanoskaliger Geräte, indem sie eine Methode zur präzisen Kontrolle der Reaktionsdynamik einzelner Moleküle bietet. Darüber hinaus deuten die Ergebnisse darauf hin, dass Metall-Einzelmolekül-Halbleiter-Nanoübergänge als vielseitige Plattformen für die nächste Generation der Nano-Optoelektronik dienen könnten. Dies könnte bedeutende Fortschritte in den Bereichen Sensoren, Leuchtdioden und Photovoltaikzellen ermöglichen. Die präzise Manipulation einzelner Moleküle unter Licht könnte die Entwicklung dieser Technologien erheblich beeinflussen und breitere Fähigkeiten und Flexibilität im Gerätedesign bieten.


    Contact for scientific information:

    Dr. Akitoshi Shiotari
    shiotari@fhi.mpg.de


    Original publication:

    https://www.nature.com/articles/s41467-024-51000-w#citeas


    More information:

    https://www.fhi.mpg.de/1597099/2024-08-13-Single-Molecule-Optoelectronics


    Images

    Einzelmolekül-Optoelektronik
    Einzelmolekül-Optoelektronik
    © FHI
    © FHI


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, all interested persons
    Chemistry, Energy, Mechanical engineering, Physics / astronomy
    transregional, national
    Research results, Transfer of Science or Research
    German


     

    Einzelmolekül-Optoelektronik


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).