Forschende der Universität Regensburg haben in Zusammenarbeit mit IBM Research Europe - Zürich einen Weg gefunden, angeregte Zustände einzelner Moleküle zu messen und deren Energie zu bestimmen.
Eine sehr grundlegende Eigenschaft von Atomen und Molekülen sind die Energien, bei denen Elektronen hinzugefügt oder aus ihnen entfernt werden können. Dies ist entscheidend für viele chemische Reaktionen, bei denen Elektronen ausgetauscht werden. Sie ist jedoch nicht nur von grundlegendem Interesse: Organische Verbindungen sind vielversprechende Kandidaten für moderne Solarzellen, Displays und Lichtquellen, da sie kostengünstig, reichlich vorhanden und ungiftig sind. Für die Funktionalität solcher Geräte sind auch die Energien des Elektronenaustauschs mit der Umgebung von größter Bedeutung.
Angeregte Zustände sind an den relevanten Prozessen in Solarzellen und lichtemittierenden Geräten beteiligt. In angeregten Zuständen haben die Moleküle zusätzliche Energie gewonnen, und der Wert dieser zusätzlichen Energie ist für viele Anwendungen entscheidend.
Forschende der Universität Regensburg haben in Zusammenarbeit mit IBM Research Europe - Zürich einen Weg gefunden, um die Energie des Ladungsaustauschs für Grund- und angeregte Zustände eines einzelnen Moleküls zu ermitteln. Zu diesem Zweck verwendeten sie ein Rasterkraftmikroskop, ein Mikroskop, in dem winzige Kräfte zwischen einer Spitze und einer Oberfläche gemessen werden. Mit einem solchen Mikroskop lässt sich sogar die innere Struktur einzelner Moleküle abbilden (siehe auch Science 325, 1110; 2009), so dass die Forscher das Molekül unter der Spitze des Mikroskops identifizieren können. Darüber hinaus kann die Spitze auch dazu verwendet werden, dem Molekül lokal Elektronen hinzuzufügen oder zu entnehmen (siehe auch Nature 566, 245; 2019). Die Regensburger Forschenden nutzten diese Möglichkeit, um auf unterschiedlich geladene und angeregte Zustände einzelner Moleküle zuzugreifen. Indem sie die Energie der in der Spitze verfügbaren Elektronen langsam verändern und beobachten, wann das Molekül Ladungszustandsübergänge durchläuft, konnten die verschiedenen angeregten Zustände erreicht, identifiziert und ihre Energien gemessen werden. Die Forschenden stellen sich vor, dass diese Technik auf eine Reihe von Molekülen angewandt werden könnte, sowohl solcher, die für die Grundlagenforschung interessant sind, als auch solcher für Anwendungen in der Energiegewinnung und der organischen Elektronik.
Prof. Dr. Jascha Repp
Fakultät für Physik
Universität Regensburg
Tel.: +49 (0)941 943-4201
E-Mail: Jascha.Repp@physik.uni-regensburg.de
Lisanne Sellies, Jakob Eckrich, Leo Gross, Andrea Donarini, Jascha Repp
Controlled single-electron transfer enables time-resolved excited-state spectroscopy of individual molecules
Nature Nanotechnology
https://www.nature.com/articles/s41565-024-01791-2
Künstlerische Darstellung des gesteuerten Austauschs einzelner Elektronen (rot und blau) zwischen de ...
Jascha Repp
Jascha Repp
Criteria of this press release:
Journalists, Scientists and scholars, Students
Physics / astronomy
transregional, national
Research results, Scientific Publications
German
Künstlerische Darstellung des gesteuerten Austauschs einzelner Elektronen (rot und blau) zwischen de ...
Jascha Repp
Jascha Repp
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).