idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/26/2024 11:23

Energy Portrait: Capturing a Molecule's Moment of Excitement

Bastian Schmidt Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

    Researchers at the University of Regensburg in collaboration with IBM Research Europe - Zurich have found a way to access excited states of single molecules and determine their energies.

    A very fundamental property of atoms and molecules are the energies, at which electrons can be added to or removed from the compound. This is decisive for many chemical reactions, in which electrons are exchanged. However, it is not only of fundamental interest: Organic compounds are promising candidates for advanced solar cells and light emitting devices, being cheap, abundant, and non-toxic. For the functionality of such devices, the energies of electron exchange with the surrounding are also of utmost importance.
    The functionality of solar cells and light emitting devices is strongly influenced by excited states, in which the molecule has acquired additional energy. Knowing the value of this energy is key in many applications.

    Researchers at the University of Regensburg in collaboration with IBM Research Europe - Zurich have found a way to access energies of charge exchange for ground and excited states of a single molecule. To this end, they utilized an atomic force microscope, a microscope, in which tiny forces between a tip and a surface are being sensed. Such a microscope allows even the internal structure of single molecules to be imaged (see also Science 325, 1110; 2009), such that the researchers can identify the molecule under the microscope’s tip. In addition, the tip can also be used to locally add and remove electrons to and from the molecule (see also Nature 566, 245; 2019). The researchers in Regensburg used this ability to access differently charged and excited states of individual molecules. Specifically, by slowly changing the energy of the electrons available in the tip and observing when the molecule undergoes charge-state transitions, the different excited states could be accessed, identified and their energies measured. The researchers envision that this technique could be applied to a wide range of molecules, including those interesting from the perspective of fundamental research and those for applications in energy conversion and organic electronics.


    Contact for scientific information:

    Prof. Dr. Jascha Repp
    Fakultät für Physik
    Universität Regensburg
    Tel.: +49 (0)941 943-4201
    E-Mail: Jascha.Repp@physik.uni-regensburg.de


    Original publication:

    Lisanne Sellies, Jakob Eckrich, Leo Gross, Andrea Donarini, Jascha Repp
    Controlled single-electron transfer enables time-resolved excited-state spectroscopy of individual molecules; Nature Nanotechnology
    https://www.nature.com/articles/s41565-024-01791-2


    Images

    Artistic illustration of the steered exchange of single electrons (red and blue) between the tip of an atomic force microscope (golden) and a single pentacene molecule (black/white spheres) adsorbed on NaCl (green).
    Artistic illustration of the steered exchange of single electrons (red and blue) between the tip of ...
    Jascha Repp
    Jascha Repp


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Artistic illustration of the steered exchange of single electrons (red and blue) between the tip of an atomic force microscope (golden) and a single pentacene molecule (black/white spheres) adsorbed on NaCl (green).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).