Ein Quantensensor, der Nervenimpulse berührungslos registrieren kann, er- öffnet neue Möglichkeiten in der Prothetik. Forschende am Fraunhofer IPA entwickeln gemeinsam mit dem Industriepartner Q.ANT den Prototyp einer Armprothese, die wie gesunde Gliedmaßen durch neuronale Befehle gesteuert wird.
Eine Amputation verändert das Leben unwiederbringlich. Vieles, was vorher Routine war, muss neu erlernt werden. Hände und Arme sind Schlüsselorgane für eine unabhängige Interaktion mit unserer Umgebung.
Im Laufe der Jahrhunderte haben Menschen verschiedene Strategien erprobt, um die Belastung durch eine Amputation im Leben einer Person zu verringern. Die wichtigsten Hilfsmittel sind mechanische oder mechatronische Geräte, die die Funktion der fehlen- den Gliedmaße teilweise oder vollständig ersetzen und unter dem Namen »Prothesen« bekannt sind. »Prothetische Geräte können vollständig passiv, körperbetrieben oder extern betrieben (z. B. durch eine Batterie) sein. Die fortschrittlichsten Prothesen werden durch neuronale Signale gesteuert, die vom Körper des Patienten gesammelt und in Steuerbefehle für das Prothesengerät übersetzt werden«, erklärt Dr. med. Urs Schneider, Wissenschaftlicher Direktor für Gesundheits- und Bioproduktionstechnik am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA.
Hintergrund
Die Hauptursachen für Amputationen der oberen Gliedmaßen sind Krankheiten, die den Blutfluss beeinträchtigen, dazu gehören beispielsweise Diabetes, Tumore, Traumata und Geburtsfehler. Traumatische Amputationen der oberen Gliedmaßen, also der plötzliche und unbeabsichtigte Verlust von Finger, Hand oder Arm durch einen Unfall oder eine schwere Verletzung sind schlimm, aber relativ selten mit geschätzten 57,7 Millionen Fällen weltweit im Jahr 2017 (McDonald et al., 2020). Diese Verletzungen betreffen überwiegend Männer mittleren Alters und sind oft arbeitsbedingt (Pomares et al., 2018; Pohjolainen & Alaranta, 1988). Zu den häufigsten Ursachen gehören Stürze, Straßenun- fälle und der Einsatz schwerer Maschinen (McDonald et al., 2020; Pomares et al., 2018).
Prothesen durch Gedanken steuern
Wenn ein Mensch oder ein Tier beabsichtigt, sich zu bewegen, sendet ihr zentrales Nervensystem schwache elektromagnetische Impulse an Motoneuronen, die wiederum Muskelfasern aktivieren. Ein einzelnes Motoneuron kann mit Tausenden von Muskelfa- sern verbunden sein, die als natürlicher Verstärker des neuronalen Signals wirken. Um diese elektromagnetischen Signale von den Muskeln zu erfassen und zu interpretieren, werden beispielsweise zur Steuerung einer Prothese häufig Elektroden verwendet.
Wenn eine Person eine spezifische Bewegung ausführt, wenn sie zum Beispiel die Hand zur Faust schließt, erzeugt die Muskelaktivierung ein charakteristisches Muster elektrischer Signale. Diese Signale können klassifiziert, gespeichert und genutzt werden, um das Verhalten elektromechanischer Aktuatoren in einem mechatronischen Gerät zu bestimmen. Trotz geringfügiger Unterschiede in Signalstärke und -verteilung führen sowohl tatsächliche Bewegungen als auch nachgeahmte Bewegungen ohne Gliedmaßen zu kohärenten Aktivierungsmustern. Dies ermöglicht es Mensch-Maschine- Schnittstellen, quasi ein Wörterbuch von Aktivierungsmustern für gewünschte Aktionen zu erstellen.
Die Qualität der Übersetzung von Muskelaktivierungen in Aktuatorbefehle wird stark von der Signalqualität beeinflusst. Messungen des elektrischen Potenzials (Elektromyo- graphie, EMG) sind weit verbreitet, haben jedoch Einschränkungen. So benötigen elek- trische Felder einen galvanischen Kontakt, außerdem dämpfen Fett- und Hautgewebe elektrische Signale. »Der Tiefpassfiltereffekt führt insbesondere bei höheren Frequenzen zur Dämpfung, verzerrt das ursprüngliche Signal und beeinflusst die Messgenauigkeit. Überwunden werden können solche Einschränkungen, indem magnetische Felder (Magnetomyographie, MMG) anstelle der von den Muskeln erzeugten elektrischen Po- tenziale aufgezeichnet werden«, so Schneider. Da beide, magnetische und elektrische Felder, Ergebnisse derselben Ionenströme sind, die Muskelzellmembranen durchqueren, kann fast 200 Jahre Wissen aus der Elektromyographie weitgehend auf diese neuen magnetfeldbasierten Schnittstellen angewandt werden.
Diamant macht Magnetfelder sichtbar
Forscherinnen und Forscher des Stuttgarter Start-ups Q.ANT haben einen Sensor entwickelt, der Magnetfeldänderungen erfassen kann, die eine Million Mal schwächer sind als das Erdmagnetfeld. Dazu kombiniert der Sensor photonische Technologien mit Quanteneffekten und ermöglicht so die berührungslose und robuste Messung menschlicher Biosignale unter Alltagsbedingungen. So kann der Sensor darauf trainiert werden, einzelne Bewegungssignale des menschlichen Muskels zu erkennen. Die von biologischen Systemen inspirierte Methode nutzt lichtbasierte Erfassungsmechanismen und ermöglicht eine präzisere und effizientere Datenerfassung sowie eine intuitivere Interaktion mit digitalen Systemen.
Kernstück des neuen Quanten-Senors ist ein winziger Diamantwürfel mit einer Seitenlänge von einem halben Millimeter. Dieser Kristall enthält, anders als ein natürlicher Diamant, der aus reinem Kohlenstoff besteht, einzelne Stickstoffatome (chemisches Kürzel N) und Leerstellen im Gitter (englisch Vacancy, abgekürzt V). Diese NV-Zentren können mit einem Laser zur Fluoreszenz angeregt werden. Durch eine zusätzliche Mikrowellenstrahlung können sie in einen Zustand gebracht werden, bei dem eine Änderung des äußeren Magnetfelds zu einer Änderung der ausgesandten Fluoreszenzstrahlung führt. Diese kann präzise detektiert werden und ermöglicht so die Bestimmung kleinster Magnetfeldänderungen.
»Unsere Kooperation mit dem Fraunhofer IPA beschleunigt den Transfer dieser Technologie von unserem Entwicklungszentrum in die klinische Praxis, denn mit diesem NV-Sensor sind wir in der Lage, die schwachen neuronalen Impulse im Muskel berührungslos und mit hoher örtlicher Auflösung zu detektieren«, erläutert Michael Förtsch, CEO bei Q.ANT. Mit dem Quantentechnologie-Know-how von Q.ANT und der Biomechatronikexpertise vom Fraunhofer IPA entsteht derzeit ein erstes Prothesen- sensormodul. Einen Demonstrator dazu zeigt das Fraunhofer IPA im November auf der Messe COMPAMED in Düsseldorf.
Mehr dazu auf der Compamed in Düsseldorf vom 11.–14.11.2024 in Halle 8a auf Stand G10.
Dr. med. Urs Schneider | Telefon +49 711 970-3630 | urs.schneider@ipa.fraunhofer.de | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA | www.ipa.fraunhofer.de
Magnetometer-Testsituation im Entwicklungszentrum
Quelle: Q.ANT
Criteria of this press release:
Business and commerce, Journalists, Scientists and scholars
Electrical engineering, Information technology, Mechanical engineering, Medicine
transregional, national
Cooperation agreements, Transfer of Science or Research
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).