idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/17/2024 15:15

KI hilft bei der Erkennung antibiotikaresistenter Bakterien

Melanie Nyfeler Kommunikation
Universität Zürich

    In einer Pilotstudie haben Forschende der Universität Zürich erstmals künstliche Intelligenz zur Erkennung von antibiotikaresistenten Keimen eingesetzt. Damit ist ein erster wichtiger Schritt gemacht, um GPT-4 zukünftig in die klinische Diagnostik zu integrieren.

    Forschende der Universität Zürich (UZH) haben zum ersten Mal künstliche Intelligenz (KI) zur Identifizierung von antibiotikaresistenten Bakterien eingesetzt. Das Team um Adrian Egli, UZH-Professor am Institut für Medizinische Mikrobiologie hat untersucht, wie GPT-4 – ein leistungsstarkes KI-Modell von OpenAI – zur Analyse von Antibiotikaresistenzen verwendet werden kann.

    Die Forschenden nutzten KI, um einen gängigen Labortest zu interpretieren: den sogenannten Kirby-Bauer-Disk-Diffusionstest. Dieser Test zeigt den Ärztinnen und Ärzten, welche Antibiotika bei einer bestimmten bakteriellen Infektion wirksam sind und welche nicht. Basierend auf GPT-4 schufen die Wissenschaftler den «EUCAST-GPT-Experten», der den strengen Richtlinien des EUCAST, des European Committee on Antimicrobial Susceptibility Testing, zur Interpretation von Resistenzmechanismen folgt. Mit den neuesten Daten und Expertenregeln ausgestattet, wurde das System an Hunderten von Bakterien getestet. Und tatsächlich: Es half, Resistenzen gegen lebenswichtige Antibiotika zu erkennen.

    Menschliche Experten sind genauer – aber KI ist schneller

    «Antibiotikaresistenzen sind weltweit eine wachsende Bedrohung. Wir benötigen dringend schnellere und zuverlässigere Werkzeuge, um sie zu erkennen», sagt Studienleiter Egli. «Unsere Forschungsarbeit ist der erste Schritt, um KI in der Routinediagnostik einzusetzen, damit Ärztinnen und Ärzte resistente Bakterien schneller identifizieren können».

    Zwar erzielte das KI-System gute Resultate bei der Erkennung bestimmter Resistenztypen, war aber nicht perfekt. Während es gut darin war, Bakterien zu erkennen, die gegen bestimmte Antibiotika resistent sind, markierte es manchmal Mikroben als resistent, obwohl sie es nicht waren. Und das könnte zu möglichen Verzögerungen bei der Behandlung führen. Im Vergleich waren menschliche Experten genauer in der Bestimmung von Resistenzen. Dennoch könnte das KI-System dabei helfen, den Diagnoseprozess zu standardisieren und zu beschleunigen.

    KI-Werkzeug unterstützt medizinische Fachpersonen

    Trotz der Einschränkungen hebt die Studie das transformative Potenzial hervor, das KI im Gesundheitswesen hat. Durch die standardisierte Interpretation komplexer Diagnosetests könnte KI letztendlich dazu beitragen, die Variabilität und Subjektivität manueller Auswertungen zu verringern und so die Ergebnisse für die Patienten zu verbessern.

    Adrian Egli betont, dass weitere Tests und Verbesserungen erforderlich seien, bevor dieses KI-Tool in Krankenhäusern eingesetzt werden könne. «Unsere Studie ist ein wichtiger erster Schritt, aber wir sind noch weit davon entfernt, menschliche Expertise zu ersetzen. Vielmehr sehen wir KI als ein ergänzendes Werkzeug, das Mikrobiologinnen und -biologen in ihrer Arbeit unterstützen kann», so Egli.

    Globale Entwicklung der Antibiotikaresistenz eindämmen

    Gemäss der Studie hat KI das Potenzial, die weltweiten Anstrengungen zur Eindämmung der zunehmenden Antibiotikaresistenzen zu unterstützen. KI-basierte Diagnostiksysteme könnten zukünftig Labore überall auf der Welt dabei unterstützen, arzneimittelresistente Bakterieninfektionen schneller und präziser zu erkennen – und so die Wirksamkeit bestehender Antibiotika zu erhalten.

    Literatur
    Christian G. Giske, Michelle Bressan, Farah Fiechter, Vladimira Hinic, Stefano Mancini, Oliver Nolte, Adrian Egli. GPT-4 based AI agents – the new expert system for detection of antimicrobial resistance mechanisms? Journal of Clinical Microbiology. 17 October 2024. DOI: https://doi.org/10.1128/jcm.00689-24


    Contact for scientific information:

    Kontakt
    Prof. Dr. med. Dr. phil. Adrian Egli
    Institut für Medizinische Mikrobiologie
    Universität Zürich
    +41 44 634 26 60
    aegli@imm.uzh.ch


    Original publication:

    Literatur
    Christian G. Giske, Michelle Bressan, Farah Fiechter, Vladimira Hinic, Stefano Mancini, Oliver Nolte, Adrian Egli. GPT-4 based AI agents – the new expert system for detection of antimicrobial resistance mechanisms? Journal of Clinical Microbiology. 17 October 2024. DOI: https://doi.org/10.1128/jcm.00689-24


    More information:

    https://www.news.uzh.ch/de/articles/media/2024/Antibiotika.html


    Images

    Kirby-Bauer-Disk-Diffusionstest von Darmbakterien und Antibiotika getränkte Papierblättchen: Die Antibiotika-Konzentration nimmt mit zunehmender Entfernung ab. Je näher Bakterien an das Testblättchen heranwachsen, desto resistenter sind sie (rote Kreise).
    Kirby-Bauer-Disk-Diffusionstest von Darmbakterien und Antibiotika getränkte Papierblättchen: Die Ant ...
    UZH
    UZH


    Criteria of this press release:
    Journalists
    Biology, Information technology, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research projects, Research results
    German


     

    Kirby-Bauer-Disk-Diffusionstest von Darmbakterien und Antibiotika getränkte Papierblättchen: Die Antibiotika-Konzentration nimmt mit zunehmender Entfernung ab. Je näher Bakterien an das Testblättchen heranwachsen, desto resistenter sind sie (rote Kreise).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).