idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/24/2024 12:48

Material mit neuartigen Dehnungseigenschaften entwickelt

Margarete Lehné Stab und Strategie - Gesamtkommunikation
Karlsruher Institut für Technologie

    Metamaterialien sind künstlich entwickelte Materialien: Ihre Bausteine funktionieren wie Atome, haben aber besondere optische, elektrische oder magnetische Eigenschaften. Entscheidend für die Funktion ist die Wechselwirkung zwischen den Bausteinen: Bislang war diese meist nur mit unmittelbar benachbarten Bausteinen möglich. Forschende des Karlsruher Instituts für Technologie (KIT) haben ein mechanisches Metamaterial entwickelt, mit dem sich Wechselwirkungen auch über größere Entfernungen im Material auslösen lassen. Das Material könnte Anwendung finden, wenn es um das Messen von Kräften oder das Überwachen von Statik geht. (Nature Communications,
    DOI: 10.1038/s41467-024-52956-5).

    Der Arbeitsgruppe von Professor Martin Wegener am Institut für Angewandte Physik (APH) des KIT ist es damit gelungen, eine Einschränkung in Metamaterialien zu überwinden. Hauptautor Dr. Yi Chen vergleicht dies mit der menschlichen Kommunikation und einem Effekt, den man aus dem Spiel „Stille Post“ kennt: Kommuniziert man mit einem Menschen über einen Vermittler, kann am Ende etwas völlig anderes herauskommen als im direkten Gespräch mit dieser Person. Dieses Prinzip gelte auch für Metamaterialien, sagt Chen. „Das von uns designte Material hat spezielle Strukturen (in der Abbildung rot). Durch diese können einzelne Bausteine nicht mehr nur über ihre Nachbarn mit weiter entfernten Bausteinen ‚kommunizieren‘, sondern auch direkt mit allen anderen Bausteinen im Material“, so der Wissenschaftler.

    Experimente an 3D-gedruckten mikroskopischen Proben

    „Diese Strukturen verleihen dem Material faszinierende Eigenschaften, beispielsweise ungewöhnliche Dehnungseigenschaften“, berichtet Co-Autor Ke Wang vom APH. Dies konnte das Team an mikrometergroßen Materialproben nachweisen, die es mit 3D-Laserdrucktechnologie herstellte, unter dem Mikroskop untersuchte und mit einer Kamera aufzeichnete. Dabei zeigte sich, dass sich ein eindimensionaler Strang (1D), der von einem Ende aus gezogen wurde, nicht gleichmäßig ausdehnte.

    Anders als beispielsweise bei einem Gummiband, das sich bei Zug gleichmäßig dehnt, zeigte das Metamaterial an einigen Stellen sogar Stauchungen. Auch ließen sich kürzere Abschnitte des Metamaterials teilweise stärker dehnen als längere Abschnitte, auch wenn überall dieselbe Kraft angewendet wurde. „Dieses ungewöhnliche Verhalten, dass einzelne Dehnungen und Kompressionen nur lokal auftreten, ist in herkömmlichen Materialien nicht möglich“, sagt Jonathan Schneider vom APH, ebenfalls Co-Autor. „Wir werden dies nun auch an zweidimensionalen (plattenartigen) Materialien und dreidimensionalen Materialien untersuchen.“

    Eine potenziell nützliche Eigenschaft könnte auch sein, dass das Metamaterial hochsensibel auf Belastungen reagiert. Je nachdem, an welchem Punkt im Material Kraft angewendet wird, kann dies zu völlig unterschiedlichen Dehnungsreaktionen auch an weiter entfernten Punkten führen. Bei einem herkömmlichen Material seien Reaktionen nur direkt am Punkt des Krafteinsatzes zu beobachten, so das Forschungsteam, während sich an entfernten Stellen im Material nur schwache oder vernachlässigbare Auswirkungen verfolgen lassen. Ein Material mit dieser Sensibilität könnte für Anwendungen wertvoll sein, bei denen Kräfte in größerem Maßstab gemessen werden sollen, beispielsweise bei der Überwachung von Gebäudeverformungen im Ingenieurwesen oder bei der Charakterisierung von Zellkräften in der biologischen Forschung.

    Die Forschungsarbeit wurde durch das Exzellenzcluster 3D Matter Made to Order (3DMM2O) des KIT und der Universität Heidelberg unterstützt. (aka)

    Bildunterschrift: Das neue Metamaterial unter dem Rasterelektronenmikroskop: Eine spezielle Struktur (rot) ermöglicht neue Dehnungseigenschaften. (Abbildung: Jonathan Schneider, KIT)

    Kontakt für diese Presseinformation:

    Antje Karbe, Pressereferentin, Tel.: +49 721 608-41186, E-Mail: antje.karbe@kit.edu

    Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.


    Contact for scientific information:

    https://www.sts.kit.edu/expertinnen-und-experten-des-kit_wegener.php


    Original publication:

    Yi Chen, Jonathan L.G. Schneider, Ke Wang, Philip Scott, Sebastian Kalt, Muamer Kadic, Martin Wegener: Anomalous frozen evanescent phonons, Nature Communications, 2024 DOI: 10.1038/s41467-024-52956-5, https://www.nature.com/articles/s41467-024-52956-5


    More information:

    https://www.sts.kit.edu/expertinnen-und-experten-des-kit_wegener.php


    Images

    Das neue Metamaterial unter dem Rasterelektronenmikroskop: Eine spezielle Struktur (rot) ermöglicht neue Dehnungseigenschaften.
    Das neue Metamaterial unter dem Rasterelektronenmikroskop: Eine spezielle Struktur (rot) ermöglicht ...
    Jonathan Schneider, KIT
    Jonathan Schneider, KIT


    Criteria of this press release:
    Journalists
    Materials sciences, Physics / astronomy
    transregional, national
    Research results
    German


     

    Das neue Metamaterial unter dem Rasterelektronenmikroskop: Eine spezielle Struktur (rot) ermöglicht neue Dehnungseigenschaften.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).