idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/14/2024 14:00

Targeted Glucosinolate Conversion: How Kohlrabi Tissues Produce Health-Promoting Compounds

Julia Vogt Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Gemüse- und Zierpflanzenbau (IGZ)

    New IGZ Study Highlights Tissue-Specific Enzyme Activity to Enhance Plant Protection and Health Benefits

    A research team at the Leibniz Institute for Vegetable and Ornamental Crops (IGZ) has analyzed how glucosinolates, health-promoting plant compounds, are broken down within various tissues of the kohlrabi plant. The findings reveal that the enzymes myrosinase and “specifier” proteins in leaves, stems, and bulb tissues determine whether breakdown products are generated that can support human health as well as enhance the plant’s pest resistance. These insights could help to specifically increase the health benefits and pest resistance of kohlrabi.

    Kohlrabi and other vegetables of the Brassica genus contain glucosinolates—bioactive plant compounds known for their health benefits to humans and their protective function against pests and diseases. Researchers at IGZ have investigated how the activity of specific enzymes in different tissues controls the conversion of glucosinolates. The goal of this research is to gain new insights that can specifically enhance the health and protective value of these vegetables.

    The study showed that glucosinolate conversion in the leaves, stems, and different parts of the bulb occurs in tissue-specific ways. Leafy tissues and inner bulb tended to form the less bioactive nitriles, whereas conversion in the leaf stalk, bulb peel, stem and root produced a higher proportion of isothiocyanates, which are known for their health-promoting properties. This tissue-specific control of glucosinolate hydrolysis is due to the distribution and activity of myrosinase and “specifier” proteins, which vary across plant parts and thus influence the distribution of the resulting breakdown products.

    To determine glucosinolate composition and breakdown products, the scientists used chromatographic and mass spectrometric techniques. In nine tissue types—including leaves, stems, and various bulb layers—they examined the activity of myrosinase and other specifying proteins to fully characterize the tissue-specific conversion processes.

    The results of the study could provide new approaches for breeding and processing of kohlrabi and other Brassica vegetables and improve our understanding of how plants adapt to their environment. Targeted cultivation and adapted processing could promote the formation of health-promoting isothiocyanates, which would further increase the nutritional benefits of these vegetables.

    Future research should take a closer look at the importance of the “specifier” proteins in particular for the plant in order to better understand their role in plant health.

    The full article was published in the journal Food Chemistry:

    Mbudu, K.G.; Witzel, K.; Börnke, F; Hanschen, F.S. (2024). Glucosinolate profile and specifier protein activity determine the glucosinolate hydrolysis product formation in kohlrabi (Brassica oleracea var. gongylodes) in a tissue-specific way. Food Chemistry. DOI: 10.1016/j.foodchem.2024.142032.


    Contact for scientific information:

    Dr. habil. Franziska Hanschen, Forschungsgruppenleiterin | E-Mail hanschen@igzev.de |
    Tel. +49 (0) 33701 - 78 250


    Original publication:

    https://doi.org/10.1016/j.foodchem.2024.142032 Mbudu, K.G.; Witzel, K.; Börnke, F; Hanschen, F.S. (2024). Glucosinolate profile and specifier protein activity determine the glucosinolate hydrolysis product formation in kohlrabi (Brassica oleracea var. gongylodes) in a tissue-specific way. Food Chemistry. DOI: 10.1016/j.foodchem.2024.142032


    More information:

    http://Targeted Glucosinolate Conversion: How Kohlrabi Tissues Produce Health-Promoting Compounds.
    http://New IGZ Study Highlights Tissue-Specific Enzyme Activity to Enhance Plant Protection and Health Benefits:


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Nutrition / healthcare / nursing, Zoology / agricultural and forest sciences
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).