idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/21/2024 14:33

Internationales Forschungsteam optimiert Rotorblätter für Mega-Windkraftanlagen

Frauke Schäfer Pressestelle
Fachhochschule Kiel

    Die Windkraft ist 2023 mit 32 Prozent des produzierten Stroms eine Säule der Energiewende. Ein Forschungsteam der FH Kiel untersuchte die aerodynamische Gestaltung von Rotorblättern. Der Schwerpunkt lag auf dem Übergangsbereich nahe der Nabe, der bislang nicht nach aerodynamischen Gesichtspunkten entworfen wird. Das Team entwickelte und simulierte neue Profile und erzielte eine Ertragssteigerung von bis zu vier Prozent. Praxistests zeigten, dass nachträglich installierte aerodynamische Hilfsmittel wie Vortex-Generatoren und Splitterplatten den Wirkungsgrad weiter verbessern. Diese Entwicklungen könnten signifikante wirtschaftliche Vorteile für Betreiber von Offshore-Windkraftanlagen bieten.

    Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der bislang nicht nach aerodynamischen Gesichtspunkten entworfen wird. Die Ergebnisse des von der Deutschen Bundesstiftung Umwelt (DBU) mit rund 230.000 Euro geförderten Projekts sind vielversprechend: Der Stromertrag von Anlagen der 10-Megawatklasse, die speziell für den Offshore-Bereich konzipiert wurden, könnte um bis zu vier Prozent gesteigert werden.

    Die Windkraft ist eine wichtige Säule der Energiewende. Mit 32 Prozent des produzierten Stroms im Jahr 2023 leistet sie einen wichtigen Beitrag zur Sicherung der Stromversorgung. Beim Design der Windenergieanlagen gilt den Rotorblättern besondere Aufmerksamkeit: Sie wandeln die kinetische Energie des Windes in Rotation um; Generatoren transformieren diese Bewegung in Strom. Damit dies optimal funktioniert, erhalten die Rotorblätter ein aerodynamisches Profil, mit Ausnahme der ersten 20 Prozent nahe der Rotornabe. Ihn haben Ingenieur*innen bisher ohne die Berücksichtigung aerodynamischer Gesichtspunkte entwickelt. „In diesem Bereich ist der Flügel vergleichsweise dick, was eine kompliziertere Umströmung mit sich bringt“, erklärt Projektleiter Prof. Dr. Alois Schaffarczyk.

    Aerodynamische Herausforderungen im Übergangsbereich

    Schaffarczyk hat sich als Professor für Technische Mechanik und Mathematik drei Jahrzehnte lang an der FH Kiel mit Windkraftanlagen und deren Optimierung befasst. Das Forschungsprojekt „Entwicklung und Vermessung von sehr dicken aerodynamischen Profilen für Windturbinenblätter“ war sein letztes Projekt als FH-Professor. Schaffarczyk wollte herausfinden, was passiert, wenn man das Profil des sogenannten Übergangsbereichs des Rotorblattes aerodynamisch auslegt. Unterstützt wurde er dabei von Zhong-Xia Wang (Gastwissenschaftler aus Beijing, China) und Brandon Lobo (Doktorand aus Indien).
    Ihr Forschungsprojekt führten die Wissenschaftler an einem generischen Blatt der 10-Megawattklasse durch. Diese Windkraftanlagen sind speziell für den Offshore-Einsatz konzipiert und zeichnen sich durch beeindruckende Abmessungen aus: Die Nabenhöhe beträgt über 140 Meter, der Rotordurchmesser liegt bei rund 200 Metern, die Rotorblätter sind über 90 Meter lang. Der vom Team ins Visier genommene Bereich umfasst die inneren 15 Meter des Rotors, und damit eine umstrichene Fläche von ca. 750 Quadratmetern.

    Vielversprechende Ergebnisse für Offshore-Windkraftanlagen

    Die Forscher entwarfen mehrere geeignete Profile, identifizierten die Vielversprechendsten und simulierten ihr Strömungsverhalten mit sogenannten CFD-Modellen. Auf Basis dieser Berechnungen verfeinerte das Projektteam das Profil und baute das Blattprofil mit den besten Eigenschaften als reales Modell. Beim Bau des Modells unterstützte die Rendsburger AEROVIDE GmbH. Die Deutsche WindGuard Engineering GmbH begleitete die gesamten Entwicklungsprozesse und brachte ihr Know-how aus Untersuchungen an Rotorblättern im Freifeld und im Windkanal ein. Im Großwindkanal der Deutschen WindGuard in Bremerhaven führte das Team aerodynamische Messungen durch. Die Ergebnisse der Tests sind vielversprechend: Das im Projekt entwickelte aerodynamische Profil ermöglicht einen bis zu vier Prozent höheren Stromertrag. „Das wäre extrem viel“, betont Prof. Dr. Alois Schaffarczyk, „damit könnte der Gewinn maßgeblich gesteigert werden.“

    Weitere Ertragssteigerung durch aerodynamische Hilfsmittel

    Zusätzlich berücksichtigte das Projektteam aerodynamische Hilfsmittel wie sogenannte Vortex-Generatoren und Splitterplatten. Beide können im Nachhinein an Rotorblätter angebracht werden, zum Beispiel im Rahmen regulärer Wartungsarbeiten. Sie helfen, den aerodynamischen Wirkungsgrad der Rotorblätter zu optimieren und Strömungsabrisse zu reduzieren. „Beim Einsatz dieser aerodynamischen Hilfsmittel konnten wir sogar zusätzliche signifikante Veränderungen der Auftriebs- und Widerstandseigenschaften beobachten und damit eine weitere Leistungssteigerung“, erklärt Nicholas Balaresque, Geschäftsführer der Deutschen WindGuard Engineering GmbH in Bremerhaven. „Wir sind überzeugt davon, mit unserem Forschungsprojekt eine wichtige technologische Lücke geschlossen zu haben“, ergänzt Prof. Schaffarczyk. „Es wäre wirklich bedauerlich, wenn Anlagenhersteller diese Chance zur Ertragssteigerung nicht nutzen würden.“

    Hintergrund
    Das Forschungsprojekt „Entwicklung und Vermessung von sehr dicken aerodynamischen Profilen für Windturbinenblätter“ wurde von der Deutschen Bundesstiftung Umwelt mit einer
    Fördersumme von 234.699 Euro finanziert.
    Projektleiter: Prof. Dr. Alois Schaffarczyk (FH Kiel)
    Koordinator: Forschungs- und Entwicklungszentrum Fachhochschule Kiel GmbH
    Kooperationspartner: Fachhochschule Kiel | Deutsche Windguard GmbH | AEROVIDE GmbH


    Contact for scientific information:

    Prof. Dr. Alois Schaffarczyk
    alois.schaffarczyk@fh-kiel.de


    Original publication:

    https://www.mdpi.com/2674-032X/4/3/10


    Images

    Das neue Profil im Windkanal der Deutschen WindGuard Engineering GmbH in Bremerhaven. Hier konnte das Projektteam das neue Profil im Modellmaßstab (Höhe des Modells ca. 600 mm) testen.
    Das neue Profil im Windkanal der Deutschen WindGuard Engineering GmbH in Bremerhaven. Hier konnte da ...
    Deutsche WindGuard Engineering
    FH Kiel


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Energy, Environment / ecology, Mechanical engineering
    transregional, national
    Cooperation agreements, Research results
    German


     

    Das neue Profil im Windkanal der Deutschen WindGuard Engineering GmbH in Bremerhaven. Hier konnte das Projektteam das neue Profil im Modellmaßstab (Höhe des Modells ca. 600 mm) testen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).