idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/03/2024 08:57

Record Efficiency – Tandem Solar Cells made from Perovskite and Organic Material

Dr. Stefanie Mikulla Referat für Presse- und Öffentlichkeitsarbeit
Universität Potsdam

    Trying to improve the efficiency of solar cells to become independent from fossil energy sources is a major goal of solar cell research. A team around the physicist Dr. Felix Lang from the University of Potsdam, Prof. Lei Meng and Prof. Yongfang Li from the Chinese Academy of Sciences, Beijing, now combine perovskite with organic absorbers to form a record-level tandem solar cell as reported in the scientific journal “Nature”.

    Combining two materials that selectively absorb short and long wavelengths, e.g., blue/green and red/infrared parts of the spectrum, makes the best use of our sunlight and is a well-known strategy to increase efficiency in solar cells. Best red/infrared absorbing parts of solar cells so far were, however, made from traditional materials, such as silicon or CIGS (copper indium gallium selenide). Unfortunately, these require high processing temperatures, and thus exhibit a relatively high carbon footprint.

    In their work, now published in “Nature”, Lang and colleagues combine two emerging solar cell technologies, namely perovskite and organic solar cells, that both are processed at low temperatures with a low carbon footprint. Achieving a record level of 25.7 % efficiency for this new combination, however, was not easy, says Felix Lang: “This was only possible by combining two major breakthroughs.” First, Meng and Li synthesized a novel red/infrared absorbing organic solar cell that extends its absorption even further into the infrared. “Still, tandem solar cells were limited by the perovskite layer, which shows strong efficiency losses if adjusted to absorb only blue/green parts of the sun spectrum”, he explains. “To tackle this, we utilized a novel passivation layer applied to the perovskite that reduces material defects and improves the performance of the whole cell.”

    Link to Publication: Jiang, X. et al. Lang, F. & Li, Yongfang, Isomeric diammonium passivation for perovskite–organic tandem solar cells. Nature (2024), https://doi.org/10.1038/s41586-024-08160-y

    Images:
    Schema_Felix Lang: Schematic representation of perovskite-organic tandem solar cell setup. Image Credit: Felix Lang.
    Lang und He_C. Thee Vanichangkul. Felix Lang and Guorui He with perovskite OPV solar cells. Photo: C. Thee Vanichangkul
    Solarzelle _C. Thee Vanichangkul. Solar cell with passivation in the laboratory under simulated sunlight. Photo: C. Thee Vanichangkul

    Contact:
    Dr. Felix Lang, Institute of Physics and Astronomy
    Tel.: +49 331 977 5630
    E-Mail: felix.lang.1@uni-potsdam.de

    Media Information 28-11-2024 / Nr. 112
    Dr. Stefanie Mikulla

    Universität Potsdam
    Referat Presse- und Öffentlichkeitsarbeit
    Am Neuen Palais 10
    14469 Potsdam
    Tel.: +49 331 977-1474
    Fax: +49 331 977-1130
    E-Mail: presse@uni-potsdam.de
    Internet: www.uni-potsdam.de/presse


    Contact for scientific information:

    Dr. Felix Lang, Institute of Physics and Astronomy
    Tel.: +49 331 977 5630
    E-Mail: felix.lang.1@uni-potsdam.de


    Original publication:

    https://doi.org/10.1038/s41586-024-08160-y


    Images

    Felix Lang and Guorui He with perovskite OPV solar cells.
    Felix Lang and Guorui He with perovskite OPV solar cells.
    C. Thee Vanichangkul
    C. Thee Vanichangkul

    Solar cell with passivation in the laboratory under simulated sunlight.
    Solar cell with passivation in the laboratory under simulated sunlight.
    C. Thee Vanichangkul
    C. Thee Vanichangkul


    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Scientific Publications
    English


     

    Felix Lang and Guorui He with perovskite OPV solar cells.


    For download

    x

    Solar cell with passivation in the laboratory under simulated sunlight.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).