idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/10/2024 09:17

Auf hoher See und in der Hochleistungs-Elektronik: Neue Sensorkonzepte dank integrierter Lichtwellenleiter aus Glas

Susann Thoma Presse- und Öffentlichkeitsarbeit
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

    In Glas integrierte Lichtleiter haben das Potenzial, die Messqualität von Sensoren für Forschung und Industrie deutlich zu verbessern. Im Projekt „3DGlassGuard“ arbeitet ein Konsortium unter Beteiligung des Fraunhofer IZM unter anderem an einem Sensor für die Dichtemessung von Meerwasser, der einheitlichere Klimamodelle ermöglichen soll. Auch für Leistungselektronik wollen die Forschenden Sensoren mithilfe neuartiger optischer 3D-Mikrostrukturen und KI-Designprozessen in Glas realisieren.

    Sensoren stoßen bei elektrischen Messungen zunehmend an ihre Grenzen - vor allem, wenn sie in sensiblen Umgebungen wie in großen Energieparks oder unter Wasser eingesetzt werden. Das Problem bei den aktuellen Sensorkonzepten sind Stromverluste und kostenintensive Herstellungsprozesse. Einen Lösungsansatz bieten Sensorkonzepte auf Basis von in Glas integrierten Lichtwellenleitern. Hieran arbeitet ein großes Konsortium aus Industrie und Forschung im BMBF-geförderten Projekt „3DGlassGuard“. Dazu sollen dreidimensional strukturierte Glaslagen in die Leiterplatte integriert werden. Diese Glass-Core-Substrate ermöglichen neue Anwendungen in der Sensorik und Datenübertragung.

    Die Forschenden vom Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM entwickeln im Projekt zusammen mit den anderen Partner*innen neuartige Sensortypen, die für Branchen wie Energie, Infrastruktur, Umwelt‐ und Meeresforschung interessant sind. Bisher übliche Sensorlösungen nutzen faserbasierte oder elektrische Leiter. „3DGlassGuard“ will das mithilfe einer durch Ionenaustausch und Selective Laser Etching (SLE) dreidimensional strukturierten und direkt in die Leiterplatte integrierten Glaslage ändern.

    Anwendungen für Industrie und Forschung

    Im Projekt werden Sensorkonzepte für zwei Anwendungsszenarien entwickelt. In Kooperation mit Siemens realisieren die Expert*innen einen optischen Stromsensor für leistungselektronische Anwendungen, wie Strommessungen in High-Power-Electronics. Dieser neue Sensor ist nicht, wie üblich, aus einem Schaltkreis aus optischen Fasern aufgebaut, der einerseits viel Platz auf der Leiterplatte und andererseits eine komplexe Justage benötigt, um korrekt zu funktionieren, sondern aus Lichtwellenleitern, die in einer 3D-Glaslage auf die Leiterplatte integriert werden. Zudem werden bisher auftretende Wechselwirkungen durch die integrierte Glaslage umgangen, da sie galvanisch isoliert ist und die Lichtwellenleiter im Glas eingeschlossen sind. Diese Lichtwellenleiter zeichnen sich durch geringe Leitungsverluste aus und erlauben gleichzeitig die Führung von Licht mit verschiedenen Wellenlängen und Zuständen, wie beispielsweise einer definierten Polarisation. Dadurch lassen sich viel mehr Informationen als auf rein elektrischem Weg messen und übertragen.

    Ein weiterer Sensor wird zusammen mit Sea & Sun Technology zur Dichtemessung von Meerwasser aufgebaut. Er nutzt das Prinzip des Interferometers, das die Überlagerung von Lichtwellen misst. Aktuell messen Dichtesensoren die elektrische Leitfähigkeit des Meerwassers, aus der sich seine Dichte herleiten lässt. Dieser Prozess stützt sich jedoch auf weltweit unterschiedlichen Referenzwerte. Eine unmittelbarere, rein optische Messung mittels des neuen Sensorkonzepts würde deutlich höhere Auflösung und eine Standardisierung der Messergebnisse ermöglichen. Damit könnten beispielsweise einheitlichere Klimamodelle erstellt werden.

    Aktuell arbeiten die Forschenden an der Umsetzung der Demonstratoren, um diese dann Funktionalitätstests mit den Unternehmen zu unterziehen. Eine besondere Herausforderung ist dabei die Miniaturisierung der neuen Sensorkonzepte, um sie auf einer Leiterplatte unterzubringen. Das Material Glas bietet durch seine planare Form aber mehr Möglichkeiten die Lichtwellenleiter und weitere Funktionalitäten einzubringen. Parallel zur Entwicklung der Sensoren befinden sich zusammen mit der TU Berlin KI-gestützte Simulationstools in Arbeit. Diese sollen dabei helfen, einzelne optische Komponenten der Sensoren zu verkleinern und effizienter zu machen, wie es durch einen Menschen allein nicht möglich wäre.

    Das Projekt „3DGlassGuard“ läuft vom 15.05.2024 - 14.05.2027. Es wird mit insgesamt 4,6 Millionen Euro gefördert. Davon stammen 69,3% aus Mitteln des Bundesministeriums für Bildung und Forschung aus dem Förderprogramm Quantensysteme mit dem Förderkennzeichen 13N16852. Am Projekt beteiligt sind die Siemens AG als Projektkoordinator, das Fraunhofer IZM, die Contag AG, die LightFab GmbH, die Sea & Sun Technology GmbH, die Technische Universität Berlin und die Schott AG als assoziierter Partner.

    (Text: Steffen Schindler)


    Contact for scientific information:

    Julian Schwietering l System Integration & Interconnection Technologies l Telefon +49 30 46403-731 l julian.schwietering@izm.fraunhofer.de l
    Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM l Gustav-Meyer-Allee 25 l 13355 Berlin l www.izm.fraunhofer.de l


    Original publication:

    https://www.izm.fraunhofer.de/de/news_events/tech_news/3dglassguard.html


    Images

    Mess- und Prüfeinrichtung für Leistungselektronik
    Mess- und Prüfeinrichtung für Leistungselektronik

    Bild: Siemens AG

    Simulationsbild aus den Arbeiten an „3DGlassGuard“
    Simulationsbild aus den Arbeiten an „3DGlassGuard“

    Bild: Fraunhofer IZM, erzeugt mittels Ansys Lumerical


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Electrical engineering, Energy, Oceanology / climate
    transregional, national
    Research projects
    German


     

    Mess- und Prüfeinrichtung für Leistungselektronik


    For download

    x

    Simulationsbild aus den Arbeiten an „3DGlassGuard“


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).