Hof - Die rasante Entwicklung der Künstlichen Intelligenz (KI) bringt nicht nur technologische Fortschritte, sondern auch komplexe ethische Fragen mit sich. Insbesondere bei generativer KI, wie Sprach- oder Bildgeneratoren, rückt das Thema der voreingenommenen Ergebnisse (Bias) in den Mittelpunkt der Diskussion. Prof. Dr. René Peinl, Marc Lehmann und Prof. Dr. Andreas Wagener vom Institut für Informationssysteme der Hochschule Hof (iisys) haben diese Problematik nun analysiert und kommen zu spannenden Erkenntnissen.
Bias in KI-Modellen bezeichnet die Neigung, Ergebnisse zu liefern, die einseitig oder von menschlichen Vorurteilen geprägt sind. „Diese Verzerrungen entstehen oft durch die Daten, mit denen die Modelle trainiert werden, sowie durch deren algorithmische Verarbeitung. In Studien wird häufig stillschweigend davon ausgegangen, dass eindeutig definiert ist, was eine „korrekte“ oder „unvoreingenommene“ Antwort darstellt“, so Prof. Dr. René Peinl. Doch die gesellschaftliche Realität zeigt: Solche Definitionen sind in Wahrheit oft sogar außerordentlich umstritten.
Wer entscheidet über „korrekte“ Antworten?
In der Praxis gibt es keinen Konsens darüber, was als „richtige“ oder „gerechte“ Antwort gelten sollte. Themen wie gendersensible Sprache, der menschengemachte Klimawandel oder die Gleichstellung Homosexueller sind gesellschaftlich zum Teil hoch umstritten. „Wenn ein KI-Modell zu einer Frage eine scheinbar voreingenommene Antwort liefert, stellt sich die Frage, ob dies tatsächlich ein Ausdruck von Bias ist – oder einfach die statistisch wahrscheinlichste Antwort“, erläutert Prof. Dr. Andreas Wagener.
Beispiel: Ein generiertes Bild eines „bayerischen Mannes“ zeigt häufig einen Mann in Lederhose mit Bierkrug. Diese Darstellung mag klischeehaft wirken, spiegelt jedoch eine kulturelle Symbolik wider, die für viele Menschen eine klare Aussage vermittelt. Ein Mann im Anzug oder Jogginganzug würde diesen Zusammenhang weniger deutlich machen.
Technische Grenzen
Ein Großteil der scheinbar oft voreingenommenen Ergebnisse entsteht durch die Qualität des Modells und durch die Eingaben selbst. „KI-Modelle müssen oft Entscheidungen treffen, wenn Eingaben vage oder nicht ausreichend spezifiziert sind. „So könnte die generische Eingabe „Kuh“ dazu führen, dass ein Modell vorwiegend Kühe auf einer Wiese oder im Stall generiert – auch dies ist ein Beispiel für einen „Bias“, wenngleich wohl für einen durchaus gewünschten“, so Marc Lehmann.
Hinzu kommt, dass unklare Aufgabenstellungen die Modelle dazu zwingen, wahrscheinliche Varianten zu wählen. Eine Verbesserung der Modellergebnisse erfordert daher präzisere Eingaben und eine detailliertere Betrachtung der statistischen Verteilung.
Mögliche Lösungsansätze
Die Forscher der Hochschule Hof haben verschiedene Lösungsansätze zur Minimierung von Bias untersucht, dabei jedoch keine universelle Lösung gefunden. Die Spaltung in westlichen Gesellschaften erschwere es zusätzlich, Modelle so zu gestalten, dass sie allgemeiner Akzeptanz entsprechen. In einigen Fällen kann die Verteilung innerhalb der Grundgesamtheit als Orientierung dienen. „Beispielsweise sollten Bildgeneratoren Männer und Frauen bei geschlechtsneutralen Berufsbezeichnungen gleichermaßen darstellen, um vergangene Benachteiligungen nicht zu wiederholen“, schlägt Prof. Dr. René Peinl vor.
Berücksichtigung von Minderheiten
In anderen Fällen ist es jedoch nicht sinnvoll, Gleichverteilung anzustreben. So sind z. B. 2 % der deutschen Bevölkerung homosexuell. Ein Modell, das bei generischen Eingaben wie „happy couple“ jedes vierte Bild als homosexuelles Paar darstellt, würde die statistische Realität stark überrepräsentieren. Stattdessen sollte ein KI-Modell explizite Eingaben wie „gay couple“ korrekt umsetzen und entsprechende Bilder generieren.
Landesspezifika: Ein praktikabler Kompromiss?
Ein weiterer Vorschlag der Forscher ist die Einführung landesspezifischer „Defaults“. So könnte die Eingabe „Mann“ in China zu einem asiatisch aussehenden Mann führen, in Nigeria zu einem dunkelhäutigen und in Deutschland zu einem kaukasischen Mann. Diese Anpassungen würden kulturelle und demografische Unterschiede berücksichtigen, ohne diskriminierend zu wirken.
Fazit: Die Balance zwischen Präzision und Neutralität
Die Forschung zeigt, dass die Entwicklung unvoreingenommener KI-Modelle eine enorme Herausforderung darstellt. Es gibt keine einfachen Antworten, da viele Probleme auf gesellschaftliche Uneinigkeiten zurückzuführen sind. Eine mögliche Lösung ist es, Modelle so zu gestalten, dass sie klare Eingaben akkurat umsetzen und landesspezifische Kontexte berücksichtigen. Doch selbst diese Ansätze erfordern eine fortlaufende Diskussion und Anpassung, um ethischen und technischen Anforderungen gerecht zu werden.
Prof. Dr. René Peinl
+49 9281 409 - 4820
rene.peinl@hof-university,de
Prof. Dr. René Peinl (li.), Prof. Dr. Andreas Wagener (rechts oben) und Marc Lehmann;
Hochschule Hof
Hochschule Hof
Criteria of this press release:
Business and commerce, Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
Information technology, Media and communication sciences, Psychology, Social studies
transregional, national
Research results, Transfer of Science or Research
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).