idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/17/2024 11:15

Oxygen and chlorine evolution without noble metals: Electrode potential transforms surfaces

Birte Vierjahn Ressort Presse - Stabsstelle des Rektorats
Universität Duisburg-Essen

    They are highly selective and can be easily separated from the reaction mixture: single-atom catalysts combine the advantages of homogeneous and heterogeneous catalysis. Until now, their production has generally been associated with precious metals that are anchored to a solid substrate. Researchers led by the University of Duisburg-Essen have now shown that such structures can also be formed electrochemically – independently and without noble metals. Their findings, published in the scientific journal JACS*, open up new avenues for a simpler, more sustainable production of catalytically active materials.

    MXenes are a class of two-dimensional materials that were only discovered in 2011. Theoretical studies previously predicted that they would not be catalytically active in anodic processes. Researchers led by Prof. Dr. Kai S. Exner, head of the Department of Theoretical Catalysis and Electrochemistry at the University of Duisburg-Essen (UDE), have now disproved this theory using multiscale modeling.

    The scientists discovered that when an electrode potential is applied, the MXene surface changes into a brush-like structure: atoms of non-noble metals migrate out and form so-called "SAC-like structures" (single atom catalyst-like). These catalysts mediate two important reactions, namely the oxygen evolution and chlorine evolution reactions.

    The result is a material whose surface has catalytically active sites without the addition of precious metals. 'We concluded that MXenes behave similarly to enzymes in an electrochemical environment: by applying an electrode potential, their active sites are created directly in the process,' explains Exner.

    The team was also able to show that the resulting SAC-like structures are selective: if water and chloride ions are in the reaction environment at the same time, only gaseous chlorine is formed. The formation of this base chemical is a key process in the chemical industry, which produces more than 70 million tons of gaseous chlorine (Cl2) per year. Cl2 is required for the production of pharmaceuticals, plastics, batteries, and for water treatment. However, when only water is available in the electrolyte, the active MXene surface facilitates the production of gaseous oxygen (O2) by means of oxygen evolution – an important step in the formation of green hydrogen in an electrolyzer.

    This discovery can greatly simplify the production of single-atom catalysts. The elimination of expensive precious metals also reduces costs and dependencies.
    The study also involved researchers from the University of Barcelona (Spain) and scientists from Ruhr Explores Solvation (RESOLV). RESOLV is a cluster of excellence of the University Alliance Ruhr.

    * Journal of the American Chemical Society

    Editor: Birte Vierjahn, +49 203/37 9-2427, birte.vierjahn@uni-due.de


    Contact for scientific information:

    Prof. Dr. Kai S. Exner, Theoretical Catalysis and Electrochemistry, +49 201/18 3-2992, kai.exner@uni-due.de


    Original publication:

    https://doi.org/10.1021/jacs.4c08518


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Energy, Materials sciences
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).