Einem Team unter der Leitung von Physiker:innen der Universität Duisburg-Essen ist es erstmals gelungen, die Spintextur zuvor erzeugter Meronen präzise zu ermitteln und daraus auf die topologischen Eigenschaften dieser Strukturen zu schließen. Ihre Erkenntnisse, veröffentlicht in Advanced Photonics, könnten dazu beitragen, Informationen künftig sicherer zu übertragen und zu speichern.
Elektronen, die sich kollektiv in einem Edelmetall bewegen, werden als Plasmonen bezeichnet. Sie werden etwa in der Katalyse oder in der Sensorik genutzt. Um die wellenartige Ausbreitung von Plasmonen an Edelmetalloberflächen zeitaufgelöst zu untersuchen, werden Laserpulse von wenigen Femtosekunden Dauer eingesetzt. Eine Femtosekunde entspricht dem Millionstel Milliardstel einer Sekunde. Mit einer noch einmal 10-fach besseren Zeitauflösung lässt sich die Bewegung von Plasmonenwellen in einem Photoelektronenmikroskop mit nahezu Lichtgeschwindigkeit in Raum und Zeit abbilden. Seit vielen Jahren entwickelt die Arbeitsgruppe um Prof. Dr. Frank-J. Meyer zu Heringdorf aus der Physik der Universität Duisburg-Essen (UDE) diese Art der zeitaufgelösten Mikroskopie. Ihre Arbeit hat weltweit Beachtung gefunden.
Nun ist es dem UDE-Team mit Kolleg:innen der Universitäten Stuttgart und Melbourne (Australien) Einmaliges gelungen: Sie haben mit bislang unerreichter zeitlicher und räumlicher Präzision die elektrische Feldstruktur von Plasmonenwellen so genau gemessen, dass daraus die topologischen Eigenschaften abgeleitet werden können. „Die Topologie ist eine mathematische Theorie, in der eigentlich unterschiedliche Objekte anhand übergeordneter geometrischer Eigenschaften klassifiziert werden können“, so Meyer zu Heringdorf. „Das bekannteste Beispiel ist wohl die topologische Gleichheit einer Tasse mit Henkel und eines Donuts: Beide sind unterschiedliche Objekte, aber beide haben genau ein Loch.“
Die Wissenschaftler:innen haben nun die lokale Spintextur eines sogenannten Meronenpaares untersucht. Meronen sind topologisch stabile Strukturen, bei denen sich Spinvektoren in bestimmter Art und Weise anordnen. „Überträgt man die Spinvektoren auf eine Kugel (so, wie Käsespießchen auf eine Melone), und wird nur eine Kugelhälfte von Vektoren bedeckt, so entspricht die Topologie der eines Merons“, erklärt der Physiker. Ein Meronenpaar besteht aus zwei identischen Meronen. „Für unsere Experimente haben wir ultrakurze Laserpulse genutzt, um die elektrischen Felder zu messen. Die magnetischen Felder konnten wir anschließend aus den gemessenen Daten ableiten und auf dieser Grundlage das Spinmoment berechnen.“
Das Forscherteam konnte so nachweisen, dass die Topologie des Plasmons konstant ist, obwohl das elektrische wie auch das magnetische Feld mit einer Periode von 2.66 Femtosekunden schwingen und rotieren. Diese Stabilität könnte künftig helfen, Informationen sicher zu speichern oder zu übertragen, denn topologisches Licht in Glasfasern wären resistenter gegen Verluste und Störungen.
Prof. Dr. Frank-J. Meyer zu Heringdorf, Experimentalphysik, Tel. 0203/37 9-1465, meyerzh@uni-due.de
https://doi.org/10.1117/1.AP.6.6.066007
Criteria of this press release:
Journalists, Scientists and scholars
Physics / astronomy
transregional, national
Research projects, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).