idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/15/2025 14:52

Der molekulare Schnellkochtopf

Gerrit Faust Presse- und Öffentlichkeitsarbeit
Deutsches Museum

    Aus den Laboren für Nanowissenschaften am Deutschen Museum kommt eine neue Methode, um Nanostrukturen aus Molekülen herzustellen.

    Grundlagenforschung im Forschungsmuseum: Ein Team von Nanowissenschaftlern hat in den Laboren des Deutschen Museums eine neuartige Methode entwickelt, um stabile molekulare Nanostrukture auf reaktionsträgen Oberflächen herzustellen. Die Ergebnisse dieser Arbeit wurden jetzt in der Fachzeitschrift Angewandte Chemie International Edition veröffentlicht.

    Es sieht ein bisschen aus wie in einem Hobbykeller für Tüftler: Werkzeugregale an der Wand, Tische mit seltsamen Apparaturen, Schrauben, Zangen, elektronisches und mechanisches Zubehör, ein Computerarbeitsplatz, ein Turm mit elektronischen Bauteilen aus unterschiedlichen Epochen und mittendrin der eigentliche Versuchsaufbau: ein Konstrukt aus einer Vakuumkammer mit verschiedenen Leitungen und Kontrollfenstern und einem Rastertunnelmikroskop als Herzstück. Hier arbeiten Markus Lackinger, der Leiter des Labors für Nanowissenschaften am Deutschen Museum, und sein Postdoc Lukas Grossmann.

    Das Forschungsgebiet der beiden heißt „OSS“, On-Surface Synthesis: Auf (On) eine Oberfläche (Surface) werden eigens konzipierte Moleküle abgeschieden und dann durch Heizen im Ultrahochvakkuum zur Reaktion gebracht, um sie miteinander zu Nanostrukturen zu verbinden (Synthesis). „Auf herkömmlichem Weg werden die Moleküle für solche Prozesse auf Metalloberflächen aufgebracht, die die Reaktion begünstigen, aber leider auch handfeste Nachteile mit sich bringen“, sagt Markus Lackinger.

    So beeinflussen und verändern Wechselwirkungen mit dem darunterliegenden Metall die für Anwendungen besonders relevanten Eigenschaften der resultierenden Nanostrukturen. Außerdem sorgen die Metalle – am häufigsten werden Gold, Silber oder Kupfer verwendet - dafür, dass die Nanostrukturen weniger stabil sind, weil sie nicht nur die gewünschte Verknüpfungsreaktion erleichtern, sondern gleichermaßen die Zersetzung der Netze und Moleküle beschleunigen. Metalloberflächen sind zudem sehr anfällig für Verschmutzung und Oxidation. Das ist kritisch, wenn die Nanostrukturen künftig außerhalb des Ultrahochvakuums, in dem sie hergestellt wurden, Anwendung finden sollen.

    Vor etwa einem Jahr haben Markus Lackinger und sein Kollege Lukas Grossmann deshalb begonnen, mit Graphit als Unterlage für die Molekül-Synthese zu experimentieren. „Graphit hat für unsere Reaktion keine chemische Wirkung“, erklärt Grossmann, „das heißt, die molekularen Nanostrukturen entstehen allein durch den Einfluss der Temperatur. So trägt auch die Graphitoberfläche nicht zur Zersetzung bei, wodurch die Nanostrukturen auf Graphit um einiges robuster sind als auf einer metallischen Oberfläche.“ Und da die Nanostrukturen nur schwach mit der Graphitunterlage wechselwirken, könnte man künftig ihre intrinsischen Eigenschaften einfacher untersuchen und später auch nutzen.

    Ganz so einfach – ersetze Gold durch Graphit – war es aber doch nicht: „Beim Aufheizen fehlte nun erst mal ein wichtiger Vorteil der Metalle – nämlich, dass sie die Moleküle auf der Oberfläche stark binden“, sagt Lackinger. „Auf dem Graphit liegend würden sich die Moleküle mit steigenden Temperaturen sozusagen in Luft auflösen.“ Sozusagen – denn „Luft“ ist in diesem Fall tatsächlich der falsche Begriff, weil die Synthese normalerweise im Vakuum stattfindet.

    Und genau hier lag auch die Lösung des Problems: „Unser Trick ist, dass wir nicht im Vakuum, sondern in einer Edelgas-Atmosphäre heizen“, sagt Markus Lackinger. „Die Argon-Atome halten unsere Moleküle lange genug auf der Graphit-Oberfläche, damit sie bei höheren Temperaturen miteinander reagieren können, ohne wegzufliegen.“ Ein weiterer Trick war, die Temperatur etwa einhundertmal langsamer als üblich zu erhöhen. Nur so bleibt den Molekülen bei der Reaktionstemperatur genügend Zeit, sich zu verknüpfen und damit zu stabilisieren.

    Dafür funktioniert die Methode sogar auf Oberflächen des Wundermaterials Graphen. Dieses nur ein Kohlenstoffatom dicke, zweidimensionale Material ist noch weniger reaktiv und aufgrund exotischer Eigenschaften besonders reizvoll für die Wissenschaft: „Kovalente molekulare Nanostrukturen auf Graphen könnten der Ausgangspunkt für die Herstellung und Erforschung neuartiger elektronischer Bauelemente aus molekularen Nanostrukturen sein“, meint Markus Lackinger.

    Mit der Veröffentlichung über den „molekularen Schnellkochtopf“, wie Markus Lackinger das Hochheizen in Edelgas nennt, in der Fachzeitschrift Angewandte Chemie International Edition könnten die Ergebnisse auch Grundlage für weitere Forschungsarbeiten anderer Arbeitsgruppen werden. In den Laboren des Forschungsmuseums auf der Münchner Museumsinsel testen die Wissenschaftler ihre Methode im nächsten Schritt aber erst einmal mit anderen Molekülen.


    Contact for scientific information:

    m.lackinger@deutsches-museum.de
    lukas.grossmann@tum.de


    Original publication:

    https://doi.org/10.1002/anie.202422521
    https://doi.org/10.1002/ange.202422521


    Images

    Lukas Grossmann am Versuchsaufbau im Nanolabor des Deutschen Museums.
    Lukas Grossmann am Versuchsaufbau im Nanolabor des Deutschen Museums.
    Deutsches Museum
    Deutsches Museum

    Nanostrukturen auf Graphitoberfläche.
    Nanostrukturen auf Graphitoberfläche.
    Deutsches Museum
    Deutsches Museum


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Chemistry, Materials sciences, Physics / astronomy
    transregional, national
    Research projects, Research results
    German


     

    Lukas Grossmann am Versuchsaufbau im Nanolabor des Deutschen Museums.


    For download

    x

    Nanostrukturen auf Graphitoberfläche.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).