idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/12/2025 11:21

Neutronen-Bildgebung enthüllt Optimierungspotenziale für die CO₂-Umwandlung

Katrin Grötzinger Öffentlichkeitsarbeit
Hahn-Schickard

    Wissenschaftliche Erkenntnisse von Forschenden von Hahn-Schickard und der Universität Freiburg als „Research Highlight“ in Nature Catalysis hervorgehoben

    Das klimaschädliche Treibhausgas Kohlenstoffdioxid, kurz CO₂, kann durch eine elektrochemische Reduktion – die Elektrolyse – in chemisch wertvolle Produkte wie Kohlenmonoxid (CO) oder Ethanol umgewandelt werden, die als Rohstoffe für die Industrie oder zur nachhaltigen Energiebereitstellung genutzt werden können. Ein zentrales Hindernis für die langfristige Stabilität dieser Technologie ist jedoch das Wasser- und Salzmanagement innerhalb der Elektrolysezelle, in der die chemische Reaktion stattfindet.

    Das Forschungsteam um Dr. Joey Disch und PD. Dr. Severin Vierrath von Hahn-Schickard und der Universität Freiburg hat in Zusammenarbeit mit dem französischen Institut Laue-Langevin in Grenoble einen bedeutenden Fortschritt im Verständnis der Wasserverteilung während der CO₂-Elektrolyse erzielt. Ihre Studie wurde zunächst in den ACS Energy Letters veröffentlicht und nun in der Februarausgabe von Nature Catalysis hervorgehoben. Die Studie nutzt die hochauflösende Neutronen-Bildgebung – eine der leistungsfähigsten Methoden, um den Wassertransport in Elektrolyseuren direkt zu untersuchen – um die Transportmechanismen während des gepulsten Betriebs eines CO₂-Elektrolyseurs sichtbar zu machen. Mit einer Auflösung von 6 µm ermöglicht diese Methode eine hochpräzise Untersuchung der Wasserverteilung und Salzbildung unter realistischen Betriebsbedingungen (400 mA cm⁻² bei einer Zellspannung von 3,1 V und einer Faraday-Effizienz für CO von 95 %). Im Gegensatz zu Röntgenstrahlen durchdringen Neutronen selbst metallische Komponenten leicht, während sie Wasserstoff und damit wasserhaltige Strukturen sehr gut sichtbar machen.
    Die Ergebnisse zeigen eine deutliche Stabilisierung des Elektrolyseurs während des gepulsten Betriebs, in dem das Zellpotential periodisch für kurze Zeit auf ein Potential unterhalb des Reduktionsbeginns gesetzt wird. Die Neutronen-Bildgebung liefert die Erklärung für die Stabilisierung und verdeutlicht, dass sich während der kurzen Unterbrechungen des Betriebs der Wassergehalt in der Gasdiffusionsschicht erhöht, was einen Abbau von hinderlichen Salzablagerungen fördert.

    Die elektrochemische CO₂-Reduktion eröffnet vielversprechende Perspektiven für einen nachhaltigen Umbau der chemischen Grundstoffindustrie. Besonders die CO₂-Elektrolyse zur Kohlenmonoxid-Gewinnung, als vielseitiger Ausgangsstoff für die Chemieindustrie, steht an der Schwelle zur industriellen Anwendung: Elektrolysezellen mit Anionen-Austauschmembranen überzeugen bereits durch bemerkenswerte Effizienz dank optimierter Reaktandenführung und minimierter Widerstandsverluste.

    Diese Erkenntnisse liefern also wertvolle Informationen für die Optimierung des Designs und Betriebs von CO₂-Elektrolyseuren, um die Effizienz und Langzeitstabilität dieser Systeme zu verbessern und der Umwelt das schädliche Klimagas CO2 zu entziehen.


    Contact for scientific information:

    Dr. Joey Disch, Gruppenleiter AEM-Elektrolyse
    Telefon: +49 761 216361720 | E-Mail: Joey.Disch@Hahn-Schickard.de


    Original publication:

    “Pulsed electrolysis through neutron lenses” in Nature Catalysis: https://www.nature.com/articles/s41929-025-01305-w
    "High-Resolution Neutron Imaging of Water Transport in CO₂ Electrolysis during Pulsed Operation" in den ACS Energy Letters: https://pubs.acs.org/doi/10.1021/acsenergylett.4c03003


    More information:

    https://www.ees-lab.org/


    Images

    Portrait Dr. Joey Disch
    Portrait Dr. Joey Disch
    Florian Forsbach
    Hahn-Schickard


    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Energy
    transregional, national
    Research results
    German


     

    Portrait Dr. Joey Disch


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).