Zhenyu Zhang, research associate at Fraunhofer Heinrich-Hertz-Institut (HHI), received the Impactful Presentation Award at Photonics West 2025. His recognized contribution presents significant advances in fiber optic tactile sensing for minimally invasive surgery. The research was carried out as part of Palpable, an EU-funded project aimed at transforming the European healthcare industry through innovations in photonics, multi-sensor technologies, and soft robotics.
During minimally invasive surgeries, haptic, visual, or tactile feedback is not always adequate, as current commercial surgical systems lack the ability to replicate palpation—a critical sense surgeons rely on to assess tissue during procedures. Combined with the lack of dexterity in surgical tools, operations are time-consuming and have an increased possibility of accidental tissue damage.
The Palpable project works on photonic, multi-sensing systems and soft robotics devices to optimize laparoscopic tools and processes, reduce invasiveness and operative time, and increase safety and functionality. To achieve this, the project team is developing a finger-like tool with a new instrument that can acquire, process and interpret vast amounts of sensory data, enable new functionalities, and be manufactured sustainably and at reduced cost.
The awarded paper presents a novel miniaturized palpation probe for measuring the tactile force and stiffness of an object. The probe is based on fiber Bragg gratings (FBGs), which are inscribed point-by-point with femtosecond laser and integrated on a pneumatically actuated silicone membrane. The proposed sensor tool provides the surgeon with additional stiffness information to compensate for the lack of haptic sensation during minimally invasive surgery. It is designed to be integrated into miniaturized tools for various minimally invasive surgical applications.
“My work centers on developing innovative sensor technologies using glass fiber and polymer waveguides, with a focus on their integration into chemical and biomedical systems,” said Zhenyu Zhang, Research Associate at Fraunhofer HHI. “It’s an exciting challenge to leverage this expertise to create a next-generation optical palpation tool. It opens up a new frontier in medical technology holding enormous promise for safer, more precise, and accessible interventions in the future.”
The paper was co-authored by Georgios Violakis, Abu Bakar Dawood, Ahmad Abdalwareth, Kaspar Althoefer, Panagiotis Polygerinos, Martin Angelmahr, and Wolfgang Schade.
Dr. rer. nat. Martin Angelmahr
Head of FiberLab Group
Phone +49 5321 3816-8404
martin.angelmahr@hhi.fraunhofer.de
https://doi.org/10.1117/12.3039246
https://palpable-project.eu/project
Criteria of this press release:
Journalists
Information technology, Medicine, Physics / astronomy
transregional, national
Research projects, Scientific Publications
English
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).