idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/20/2025 10:31

The Least Confident Delivery Drone Gets the Job - Researchers from TU Darmstadt and partners present study

Michaela Hütig Science Communication Centre - Abteilung Kommunikation
Technische Universität Darmstadt

    In the future, autonomous delivery drones could independently assess whether their remaining battery charge is sufficient for upcoming deliveries. A team of researchers from Technical University of Darmstadt and the University of Sheffield, in collaboration with the French National Institute for Research in Digital Science and Technology (INRIA) and industry partner Ingeniarius Ltd, has developed a new method for energy-aware deployment planning. The approach enables each drone to learn what orders it is capable of fulfilling even when not knowing its own battery health . It is shown to reduce delivery times and increase the number of processed orders compared to conventional approaches.

    At a fulfilment centre, delivery drones assign tasks among themselves using an auction-based system. Each drone considers its current battery level and evaluates whether it can complete the task. If so, it places a bid that reflects its confidence. The drone that wins the auction attempts the task and uses the outcome to refine its understanding of its true capabilities, which are influenced by unknown factors such as the long-term health of its battery. Counterintuitively, selecting the least confident bidder as the auction winner proved most effective. This approach enabled drones to learn more accurately where their performance limits lie and promotes smarter use of resources by deploying drones whose capabilities are well-matched to the task at hand.

    The researchers, led by Professor Roderich Groß from the Department of Computer Science at TU Darmstadt, tested their method in a specially developed multi-agent simulator over a period of eight weeks. The results showed that the learning-based approach achieved significantly higher delivery rates and shorter delivery times compared to conventional threshold-based strategies. In an extended version, drones were even able to take on tasks that they could complete only once sufficiently recharged, enabling a forward-looking allocation of resources. ‘This work shows how online learning can help robots cope with real-world challenges, such as operating without full knowledge of their true capabilities,’ said Dr Mohamed Talamali from The University of Sheffield.

    The approach can also be used to efficiently manage heterogeneous fleets in which the drones differ, for example, due to manufacturing tolerances or individual wear and tear. This paves the way for autonomously operating delivery systems with higher reliability and optimised energy usage. ‘Such autonomous delivery drones could also operate across multiple fulfilment centres, further reducing delivery times and costs,’ said Professor Groß.

    The study ‘Ready, Bid, Go! On-Demand Delivery Using Fleets of Drones with Unknown, Heterogeneous Energy Storage Constraints’ will be presented on 21 May at the 24th International Conference on Autonomous Agents and Multiagent Systems in Detroit, USA, and was selected as a finalist for the Best Paper Award from more than 1,000 submissions. It received funding from the Horizon Europe project OpenSwarm.


    Contact for scientific information:

    Prof. Dr. Roderich Groß
    roderich.gross@tu-darmstadt.de
    +49 6151 16-25711


    Original publication:

    https://arxiv.org/abs/2504.08585


    More information:

    Video about the study (engl.)


    Images

    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students
    Economics / business administration, Energy, Information technology, Traffic / transport
    transregional, national
    Research results, Scientific conferences
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).