idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/07/2025 13:27

New Dynamics Discovered in Heterogeneous Catalysis

Birte Vierjahn Ressort Presse - Stabsstelle des Rektorats
Universität Duisburg-Essen

    Oxygen evolution is considered one of the most energy-intensive steps in water electrolysis and is therefore a key factor for more efficient green hydrogen production. Modelling of the reaction mechanisms has so far been based on the assumption that the elementary steps take place sequentially and not in a concerted manner. A team led by Prof. Dr. Kai S. Exner from the University of Duisburg-Essen has now shown that this assumption is not always correct. The results, published in Nature Communications, open up new possibilities for improving solid catalysts for energy conversion and storage applications.

    There are two basic types of catalysis: homogeneous catalysts have the same physical state as the substances being converted (e.g., they all are liquid), while heterogeneous catalysts are in a different phase, for example a solid that reacts with liquids or gases. For a reaction to take place on the surface of a solid catalyst, the starting materials (reactants) must attach to its surface (adsorption) and then dissolve again after the reaction has taken place (desorption).

    Until now, research into solid catalysts – i.e., the heterogeneous variant – has assumed that adsorption and desorption occur sequentially: the reactant binds to the catalyst, reacts, and then the product dissolves. In homogeneous catalysis, however, it is known that these steps take place simultaneously.

    When modelling reaction mechanisms in heterogeneous catalysis, possible simultaneous elementary steps have not always been taken into account. However, a theoretical study within the RESOLV Cluster of Excellence now shows that the solid iridium dioxide (IrO₂), which is used as an anode material for the production of green hydrogen, behaves similarly to a homogeneous catalyst with regard to oxygen evolution: oxygen is produced in a ‘Walden-like mechanism’ in which adsorption and desorption occur in a concerted manner, analogous to homogeneous variants. This contradicts previous ideas and opens up new possibilities for improving solid catalysts that are more closely aligned with the principles of homogeneous processes in solution.

    Exner's research builds on several joint projects within the University of Duisburg Essen and the University Alliance Ruhr: the Natural Water to Hydrogen project headed by Prof. Dr Corina Andronescu, the Collaborative Research Centre 247 Heterogeneous Oxidation Catalysis in the Liquid Phase and, last but not least, the research in the new Active Sites building, for which the ground-breaking ceremony recently took place.

    Editor: Birte Vierjahn, +49 203/37 9-2427, birte.vierjahn@uni-due.de


    Contact for scientific information:

    Prof. Dr. Kai S. Exner, Theoretical Catalysis and Electrochemistry, +49 201/18 3-2992, kai.exner@uni-due.de


    Original publication:

    Usama, M., Razzaq, S., Hättig, C., Steinmann, S. & Exner, K. S. Oxygen evolution reaction on IrO2(110) is governed by Walden-type mechanisms. Nat. Commun. 16, 6137 (2025).
    https://doi.org/10.1038/s41467-025-61367-z


    Images

    Illustration of the Walden-like mechanism
    Illustration of the Walden-like mechanism
    Source: Muhammad Usama
    Copyright: UDE/Muhammad Usama


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Chemistry, Energy, Materials sciences
    transregional, national
    Research results, Scientific Publications
    English


     

    Illustration of the Walden-like mechanism


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).