idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/26/2025 14:15

Ancient origins and evolutionary fate of sex chromosomes in brown algae

Beatriz Lucas Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Biologie Tübingen

    The genomes of brown algal species with diverse sexual systems reveal how sex chromosomes originate, evolve, and sometimes transform into autosomes

    By tracing the genomes of nine brown algal species, researchers shed light on the ancient origins, remarkable stability, and unexpected transformations of U/V sex chromosomes. This reveals how sex determination can evolve, shift, and even be replaced in these aquatic organisms.

    Short Overview
    1. Ancient origins of U/V chromosomes: Brown algal sex chromosomes arose between 450 and 224 million years ago, carrying a conserved set of core sex-linked genes including the pivotal male-determining gene MIN. These have been remarkably stable across vast evolutionary timescales.
    2. Diverse structural evolution across lineages: Sex chromosomes show lineage-specific diversification and rearrangements, with the acquisition of new genes linked to increased complexity in morphology and sexual dimorphism among different brown algal species.
    3. Dynamic sex determination systems: The study uncovers frequent evolution of “orphan” or taxonomically restricted genes on sex chromosomes and demonstrates cases where the ancestral U/V system has radically shifted or stops being a sex chromosome (known as an autosome), such as two hermaphroditic species acquiring both sex functions and the emergence of a diploid sex-determining system in Fucus serratus.
    4. Implications for understanding sex chromosome evolution: These findings challenge conventional views by showing sex determination systems can be surprisingly dynamic, evolving, reinventing, or collapsing, highlighting brown algae as a powerful model for studying fundamental aspects of sexual reproduction and chromosome evolution.

    Sex determination is a cornerstone of biology, yet many mysteries remain about how sex chromosomes evolve, especially outside familiar mammal and bird systems. Unlike mammals, where sex is set at fertilisation by XX/XY chromosomes, brown algae determine sex during spore formation based on U (female) or V (male) sex chromosomes. Despite their importance, the rise, evolution, and demise of U/V sex chromosomes have remained an enigma.

    This new research demonstrates that these specialised sex chromosomes arose between 450 and 224 million years ago. A key finding is the identification of a pivotal male-determining gene, MIN, as well as six other core sex-linked genes, which have astonishingly remained almost unchanged across these vast evolutionary timescales.

    The study also reveals that the extent and gene content of the sex-determining region in these chromosomes have diversified uniquely across brown algal lineages, often expanding through chromosomal rearrangements and acquiring new, lineage-specific genes. These structural changes may be linked to the increasing morphological and reproductive complexity observed among different brown algal species.

    The dynamic nature of sex determination systems

    The study also highlights that “orphan” or taxonomically restricted genes (genes unique to certain lineages) evolve with unexpected frequency in U and V chromosomes, underscoring their dynamic nature. “The U/V sex chromosomes have unique genomic characteristics that make them prone to evolving orphan genes. This evolutionary pattern may provide important clues about how unique brown algal genes originated,” said Josué Barrera-Redondo, first author of the paper and former postdoctoral researcher at the Max Planck Institute for Biology Tübingen.

    The international team, led by researchers from the Max Planck Institute for Biology Tübingen (Germany), in collaboration with the CNRS and the Genoscope (France), uncovered two surprising cases where the ancestral U/V sex chromosome system has radically changed or even disappeared, transforming into autosomes. In two hermaphroditic species, formerly male individuals acquired key female-specific genes, enabling them to develop the reproductive structures of both sexes. Meanwhile, the marine seaweed genus Fucus lost the U/V system when its lineage became completely diploid. The researchers found that new sex-determining genes supplanted the ancestral V chromosome gene MIN, marking a major shift in how sex is controlled genetically.
    “Our research reveals that brown algal sex chromosomes manage a delicate balance between stability and surprising flexibility. This demonstrates how dynamic and diverse sex determination can be across the tree of life,” explains lead researcher Dr Susana Coelho, Director of the Department of Algal Development and Evolution at the Max Planck Institute for Biology Tübingen.

    These findings show how sex-determining systems can collapse and be replaced, demonstrating that even something as fundamental as “male” and “female” is not fixed forever. It highlights a dynamic evolutionary landscape where sex-determining systems can evolve in unexpected ways – how they originate, reinvent themselves to persevere, and sometimes transform into autosomes. This offers fresh insights into sexual reproduction as one of the most fundamental aspects of biology.

    This comprehensive investigation into brown algal sex chromosomes increases our understanding of U/V chromosome evolution and positions brown algae as a powerful model to explore the genetic and evolutionary basis of sex determination.


    Contact for scientific information:

    Department of Algal Development and Evolution
    Dr. Susana Coelho
    susana.coelho@tuebingen.mpg.de


    Original publication:

    Barrera-Redondo, J., Lipinska, A. P., Liu, P., Dinatale, E., Cossard, G., Bogaert, K., Hoshino, M., Craig, R. J., Avia, K., Leiria, G., Avdievich, E., Liesner, D., Luthringer, R., Godfroy, O., Heesch, S., Nehr, Z., Brillet-Guéguen, L., Peters, A. F., Hoarau, G., Pearson, G., Aury, J.-M., Wincker, P., Denoeud, F., Cock, J. M., Haas, F. B., Coelho, S. M.: Origin and evolutionary trajectories of brown algal sex chromosomes. Nat Ecol Evol (2025). 10.1038/s41559-025-02838-w


    More information:

    https://keeper.mpdl.mpg.de/d/455436ef5fe84e69848e/
    https://www.bio.mpg.de/479304/news_publication_25250104_transferred


    Images

    Microscopic image of brown algae
    Microscopic image of brown algae

    Copyright: Dr. Rémy Luthringer / Max Planck Institute for Biology Tübingen, Germany


    Criteria of this press release:
    Journalists, all interested persons
    Biology, Environment / ecology, Zoology / agricultural and forest sciences
    transregional, national
    Scientific Publications
    English


     

    Microscopic image of brown algae


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).