Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch entsteht ein metallähnliches Verhalten. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
In den meisten Metalloxiden verhalten sich Elektronen wie Autos im Stau: Starke Abstoßungskräfte hindern sie daran, sich in benachbarte Bereiche zu bewegen, die bereits von anderen Elektronen besetzt sind, und frieren sie sozusagen an Ort und Stelle ein. Materialien, die diesen Abstoßungskräften (oder Korrelationen) unterliegen, leiten Strom schlecht und zeigen beispielsweise bei der Umwandlung von Sonnenenergie eine schlechte Leistung.
Ein großes internationales Team hat nun gezeigt, dass ultrakurze Lichtimpulse von nur wenigen zehn Femtosekunden diese Abstoßungskräfte vorübergehend abschwächen können. Für einen kurzen Moment können sich die Elektronen mit geringerem Energieaufwand bewegen, wodurch sich das Material eher wie ein Metall verhält. Im Gegensatz zu herkömmlichen Methoden, die auf Temperatur, Druck oder chemischen Veränderungen beruhen, um die Leitfähigkeit zu verändern, nutzt dieser Ansatz Licht, um denselben Effekt in ultrakurzen Zeiträumen zu erzielen.
Um diesen Effekt auf ultraschnellen Zeitskalen zu erfassen, hat sich das HZB-Team mit mehreren Partnern zusammengetan. Das Experiment fand am LACUS in Lausanne (Schweiz) statt, einem Zentrum, das sich auf die Untersuchung von ultraschnellen Prozessen spezialisiert hat, während die Probencharakterisierung, Datenanalyse und Simulationen am HZB durchgeführt wurden.
Das Team konzentrierte sich auf Nickeloxid (NiO), einen Ladungstransferisolator mit einer elektronischen Struktur, die der von Hochtemperatur-Supraleitern ähnelt. In NiO gelang ihnen eine beispiellose Kontrolle: Die Verringerung der Elektronenabstoßung ist linear zur Lichtintensität, hält Hunderte von Pikosekunden an und kehrt unabhängig von der Anregungsdichte im gleichen Tempo zum Gleichgewicht zurück. Insgesamt eröffnen diese Eigenschaften spannende neue Perspektiven für effizientere lichtbasierte Bauelemente und Technologien der nächsten Generation, die einen großen Dynamikbereich mit ultraschnellen Schaltgeschwindigkeiten kombinieren.
Partnereinrichtungen:
Max Planck Institute for the Structure and the Dynamics of Matter (Germany)
Helmholtz Center for Materials and Energy (Germany)
Elettra Synchrotron Trieste (Italy)
Paul Scherrer Institute (Switzerland)
University of Basel (Switzerland)
University of California Davis (USA)
Simons Foundation Flatiron Institute (USA)
Text: Thomas Rossi
thomas.rossi@helmholtz-berlin.de
Science Advances (2025): Dynamic control of electron correlations in photodoped charge-transfer insulators
Thomas C. Rossi, Nicolas Tancogne-Dejean, Malte Oppermann, Michael Porer, Arnaud Magrez, Rajesh V. Chopdekar, Yayoi Takamura, Urs Staub, Renske M. van der Veen, Angel Rubio, Majed Chergui
DOI: 10.1126/sciadv.adx5676
Criteria of this press release:
Business and commerce, Journalists, Scientists and scholars, Students
Energy, Physics / astronomy
transregional, national
Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).