idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/23/2025 11:43

Predicting Avian Flu Outbreaks in Europe Using Machine Learning

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Local factors such as seasonal temperature, the year-dependent water and vegetation index, and data on animal density can be used to predict regional outbreaks of avian flu in Europe. This is the finding of a research team led by epidemiologist, mathematician, and statistician Prof. Dr Joacim Rocklöv. The researchers at Heidelberg University developed a machine learning model that can predict highly pathogenic avian influenza outbreak patterns in Europe with great accuracy using various indicators.

    Predicting Avian Flu Outbreaks in Europe Using Machine Learning
    Heidelberg researchers identify local outbreak indicators and develop new regional modeling approach

    Local factors such as seasonal temperature, the year-dependent water and vegetation index, and data on animal density can be used to predict regional outbreaks of avian flu in Europe. This is the finding of a research team led by epidemiologist, mathematician, and statistician Prof. Dr Joacim Rocklöv. The researchers at Heidelberg University developed a machine learning model that can predict highly pathogenic avian influenza outbreak patterns in Europe with great accuracy using various indicators. The modeling approach and targeted data collection could therefore contribute to proactive prevention measures.

    The highly pathogenic avian influenza virus infection – commonly known as bird flu – primarily affects birds. Mammals, however, are also increasingly infected. This, the researchers report, increases the probability that the virus will cross over to humans. To better predict bird flu outbreaks and put early prevention measures into place, Prof. Rocklöv’s team at the Interdisciplinary Center for Scientific Computing and the Heidelberg Institute for Global Health developed a model that combines various indicators for a possible outbreak and uses machine learning methods for modeling.

    The model was trained using data of bird flu outbreaks in Europe documented between 2006 and 2021. As potential indicators of an imminent event, the Heidelberg researchers identified local factors such as temperature and precipitation conditions, the wild bird species, poultry farm density, vegetation composition, and water levels. By combining these complex interdependent seasonal and regional variables, the researchers were able to model outbreak patterns with an accuracy of up to 94 percent.

    “Combining our modeling approach and targeted data collection can help us to map more precisely the high-risk areas and seasons when outbreaks of bird flu are more likely,” stresses Joacim Rocklöv, an Alexander von Humboldt Professor conducting research on the effects of climate and environmental change on public health in a number of projects at the university and Heidelberg University Hospital. According to Prof. Rocklöv, the research results could be used to design regional surveillance programs throughout Europe and improve early detection.

    The research work was funded by the Alexander von Humboldt Foundation within the Horizon Europe Program of the European Union. The results were published in the journal “Scientific Reports.”

    Contact:
    Heidelberg University
    Communications and Marketing
    Press Office, phone +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Contact for scientific information:

    Prof. Dr Joacim Rocklöv
    Heidelberg Institute of Global Health
    Interdisciplinary Center for Scientific Computing
    joacim.rockloev@uni-heidelberg.de

    Dr Michael Rogo Opata
    Interdisciplinary Center for Scientific Computing
    michael.opata@iwr.uni-heidelberg.de


    Original publication:

    M. R. Opata, A. Lavarello-Schettini, J. C. Semenza, and Joacim Rocklöv: Predictiveness and drivers of highly pathogenic avian influenza outbreaks in Europe. Scientific Reports (17 July 2025), https://doi.org/10.1038/s41598-025-04624-x


    More information:

    https://www.klinikum.uni-heidelberg.de/heidelberger-institut-fuer-global-health – Heidelberg Institute of Global Health
    https://www.iwr.uni-heidelberg.de/en – Interdisciplinary Center for Scientific Computing
    https://www.klinikum.uni-heidelberg.de/heidelberger-institut-fuer-global-health/... – Heidelberg Planetary Health Hub


    Images

    Criteria of this press release:
    Journalists
    Environment / ecology, Information technology, Mathematics
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).