idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/15/2026 14:10

Pancreatic cancer: Researchers reveal interplay between chronic pancreatic inflammation and early cancer development

Jonas Machner Stabsstelle Presse und Unternehmenskommunikation
Universitätsmedizin Halle

    Chronic pancreatitis is one of the biggest risk factors for developing pancreatic cancer. A research team at University Medicine Halle has developed a special animal model to identify the key molecular relationships involved. This has enabled the team to detect a group of cells with strongly upregulated inflammatory processes. The results, published in the journal Gut, could potentially aid the early identification of vulnerable individuals.

    Pancreatic cancer is a rare disease; however, its initially inconspicuous symptoms and aggressive nature make it one of the deadliest forms of cancer. “Effective treatment requires early detection. Therefore, we are conducting intensive research to more thoroughly understand the early development of cancer and to develop better ways of diagnosing it early on,” explains Dr. Helmut Laumen, head of the research laboratory in the University Clinic and Outpatient Clinic for Internal Medicine I at University Medicine Halle and co-last author of the study.

    Since the disease is usually detected late in humans, it has been virtually impossible to analyze the early stages of the disease in detail. In order to create a physiologically relevant model of early cancer development, the researchers combined two genetic traits in mice: A gene with specific mutations that occur in most patients with pancreatic cancer—even though these mutations alone rarely lead to tumors, and a second gene, hereditary in humans, that spontaneously triggers chronic pancreatitis.

    Discovery of an inflammatory cell population

    Combining these genes led to tissue remodeling, including a pathological proliferation of connective tissue (fibrosis), as well as an increase in the formation of early pre-stages of pancreatic cancer—in other words, accelerated tumor growth.

    The team then examined in detail how different types of pancreatic cells in mice communicate with each other. Molecular signals occurring in inflammatory and cancer-promoting processes reinforced one another. These signaling networks involved cells that produce digestive enzymes or connective tissue, as well as ductal cells, which transport digestive juices to the small intestine. The researchers identified a specific population of ductal cells that exhibited strong upregulation of inflammatory processes, which they refer to as "iDucts".

    These newly discovered iDucts appear to play an important role in the early stages of chronic pancreatitis and could serve as a basis for the development of new markers that would be able to detect at-risk individuals early on. These individuals could then be closely monitored, and treatment could be initiated quickly in the event of tumor development.

    Investigation of early disease stages possible thanks to new model

    The mouse model developed for this study allows other researchers to investigate potential markers for the early diagnosis of the disease. "In addition to previous models, the new mouse model provides a more physiologically relevant system for studying the relationship between inflammation and cancer development. Such models are urgently needed an d they will help us to develop better diagnostic, preventive and treatment strategies that specifically target inflammation-related cancer development,” concludes Professor Jonas Rosendahl, Director of the University Clinic and Outpatient Clinic for Internal Medicine I and last author of the study.

    The study was conducted as part of the Research Training Group 2751 “Inflammatory cues as modulators of early pancreatic carcinogenesis (InCuPanC)” and funded by the German Research Foundation (DFG).


    Contact for scientific information:

    University Medicine Halle
    University Clinic and Outpatient Clinic for Internal Medicine I

    Professor Jonas Rosendahl, Director
    jonas.rosendahl@uk-halle.de

    Dr. Helmut Laumen, Head of Research Laboratory
    helmut.laumen@medizin.uni-halle.de


    Original publication:

    Inamdar TV, Krannich F, Hesselbarth N, […], Laumen H, Rosendahl J. Hereditary chronic pancreatitis induced plasticity cooperates with mutant Kras in early pancreatic carcinogenesis. Gut. 2025 Dec 19:gutjnl-2025-335947. https://doi.org/10.1136/gutjnl-2025-335947


    Images

    Prof. Dr. Jonas Rosendahl (on the left) and Dr. Helmut Laumen review the composition of the various cell types according to the study results.
    Prof. Dr. Jonas Rosendahl (on the left) and Dr. Helmut Laumen review the composition of the various ...

    Copyright: University Medicine Halle


    Criteria of this press release:
    Journalists, all interested persons
    Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Prof. Dr. Jonas Rosendahl (on the left) and Dr. Helmut Laumen review the composition of the various cell types according to the study results.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).