idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/24/2007 17:15

Lernen im Computermodell

Katrin Weigmann Press office
Bernstein Centers for Computational Neuroscience

    Wissenschaftler erforschen Lernvorgänge durch die Computersimulation eines Kubikmillimeters Gehirn

    Dass das Gehirn lernen kann, liegt an den besonderen Eigenschaften der Nervenzellen, insbesondere deren Verbindungen, der Synapsen. Bei jeder Aktivität des Gehirns werden Informationen in Form von kurzen, elektrischen Impulsen von Zelle zu Zelle weitergegeben - man sagt, die Nervenzellen "feuern". Dabei kann die Weitergabe von Signalen regelrecht geübt werden. Wenn eine Zelle A einen Impuls aussendet, der in Zelle B eine Antwort auslöst, wird der Kontakt von der Zelle A zur Zelle B verstärkt. Besteht kein derartiger Kausalzusammenhang oder feuert wiederholt B kurz vor A, wird der Kontakt geschwächt. Durch diese so genannte "spike-timing dependent plasticity" (STDP) werden Nervenbahnen durch häufige Wiederholungen ausgebaut. Andere Verknüpfungen hingegen, die selten gebraucht werden, verfallen. Diese "Plastizität" des Gehirns, die Fähigkeit zur physiologischen und strukturellen Veränderung, gilt als Grundlage des Lernens. In einer aufwändigen Computersimulation von 100.000 Neuronen mit jeweils 10.000 Kontakten - das entspricht etwas einem Kubikmillimeter Großhirnrinde - haben Abigail Morrison, Ad Aertsen und Markus Diesmann nun Hinweise darauf gefunden, dass STDP alleine noch nicht ausreicht, um Lernvorgänge in Zellen zu erklären. Die Arbeit der Wissenschaftler vom Bernstein Center for Computational Neuroscience, der Universität Freiburg und vom RIKEN Brain Science Institute in Tokyo wird in der Juni-Ausgabe der Zeitschrift Neural Computation publiziert.

    Schon in früheren Experimenten konnten die Wissenschaftler zeigen, dass ihre Computersimulation viele Eigenschaften des Gehirns recht gut widerspiegelt. Die virtuellen Neurone feuern mit etwa gleicher Frequenz wie im Gehirn, die Aktivität schaukelt sich weder hoch, noch ebbt sie ab - das System befindet sich in einem "dynamischen Gleichgewicht". Neu in ihrem Modell ist allerdings, dass die virtuellen neuronalen Verbindungen nun auch die Eigenschaft der Plastizität besitzen. Dazu entwickelte Morrison zunächst eine neue mathematische Formulierung der STDP-Lernregel, welche die in der Literatur publizierten experimentellen Ergebnisse deutlich besser beschreibt. Damit kommt das Modell der Realität noch ein Stück näher.

    Um zu untersuchen, ob das Computermodell auch Lernvorgänge simulieren kann, regten die Wissenschaftler wiederholt eine bestimmte Gruppe von Neuronen an. Dabei beobachteten sie, dass zunächst genau das passierte, was ein Lernmodell voraussagen würde: Da die stimulierten Neurone die fortwährenden Impulse an die ihnen nachgeschalteten Neurone weitergaben, wurden diese Kontakte verstärkt. Dies ging aber auf Kosten der Kontakte von anderen vorgeschalteten Zellen im Netzwerk. Die Zellen hörten vornehmlich auf die von außen eingegebenen Signale, dadurch wurden die anderen Kontakte überflüssig und entsprechend abgebaut. Wie die Wissenschaftler feststellten, koppelte sich die ganze Gruppe von Nervenzellen, die auf die Stimulation reagierten, nach einiger Zeit vom Netzwerk ab.

    STDP alleine kann also Lernen in einem größeren neuronalen Netzwerk nicht erklären, es müssen weitere Bedingungen erfüllt sein, damit das System tatsächlich lernen kann. Es gibt schon einige Hinweise darauf, was für Bedingungen das sein könnten. Mit der Simulation von großen Netzwerken haben Morrison und ihre Kollegen ein gutes Werkzeug in der Hand, um die verschiedenen Modelle zu überprüfen und sich dem Geheimnis des neuronalen Lernens weiter zu nähern.

    Quelle:
    Morrison, A., Aertsen, A., & Diesmann, M. (2007). Spike-timing dependent plasticity in balanced random networks. Neural Computation, 19 (6) 1437-1467
    http://www.mitpressjournals.org/doi/abs/10.1162/neco.2007.19.6.1437

    Kontakt:
    Dr. Abigail Morrison
    Diesmann Research Unit
    Computational Neuroscience Group
    RIKEN Brain Science Institute
    2-1 Hirosawa
    Wako City, Saitama 351-0198
    Japan
    tel: +81 48 467 9644
    abigail@brain.riken.jp

    Prof. Dr. Ad Aertsen
    Bernstein Center für Computational Neuroscience
    Albert-Ludwigs-Universität
    Hansastrasse 9a
    79104 Freiburg i.Br.
    Tel: +49 (761) 203-9549
    ad.aertsen@biologie.uni-freiburg.de


    More information:

    http://www.bccn-freiburg.de/


    Images

    Criteria of this press release:
    Biology, Information technology, Mathematics, Medicine, Nutrition / healthcare / nursing, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).