idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/18/2008 13:36

Protein zeigt Improvisationstalent - Ungewöhnlicher Regulationsmechanismus bei der Ausbildung von Kontaktstellen zwischen Nervenzellen

Dr. Carmen Rotte Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie

    Statt Funk und Kabel sind bei der Signalübertragung in lebenden Zellen eine Vielzahl von Proteinen beteiligt. Damit Signale richtig weitergeleitet und interpretiert werden, müssen die Aktivitäten dieser Proteine genau aufeinander abgestimmt sein. Für ihre richtige Steuerung sorgt ein ausgeklügeltes Kontrollsystem, in dem so genannte Proteinkinasen eine Schlüsselrolle spielen. Wie ein internationales Wissenschaftlerteam aus Dallas (USA), Göttingen und Hamburg nun herausgefunden hat, ist eine Kinase dabei offensichtlich Meister im Improvisieren. Während alle bisher bekannten Kinasen nur mit Hilfe von Magnesium funktionieren können, hat die Pseudokinase CASK einen Trick gefunden, mit dem sie auf Magnesium ganz verzichten kann. Während der frühen Entwicklung des Nervensystems scheint sie direkt an der Ausbildung von Kontaktstellen zwischen Nervenzellen - den Synapsen - beteiligt zu sein. Pseudokinasen wie CASK galten bisher als inaktiv. Zumindest einige von ihnen dürften in der Vergangenheit zu Unrecht als nutzlos abgestempelt worden sein. (Cell, Vol. 133, 18. April 2008).

    Was tun, wenn? Nicht nur wir Menschen müssen uns ständig auf neue Situationen in unserer Umgebung einstellen und darauf reagieren. Auch lebende Zellen empfangen eine Vielzahl von Signalen, die sie richtig weiterleiten und verarbeiten müssen. Häufig werden die Zellen angeregt, zu wachsen oder sich zu teilen, einen Entwicklungsprozess zu starten oder eine Immunantwort auszulösen. Dazu müssen zahlreiche Akteure innerhalb der Zelle - die Proteine - genau aufeinander abgestimmt zusammenarbeiten. Dass sie zur richtigen Zeit und am richtigen Ort funktionieren, dafür sorgt ein komplexes Steuerungssystem. Dabei übernehmen Proteinkinasen einen entscheidenden Part. Bis zu knapp 500 verschiedene Kinasen gibt es in einer Zelle, die jeweils bestimmte Proteine regulieren. Sie aktivieren oder hemmen Proteine, lotsen sie an bestimmte Orte in der Zelle oder blockieren ihre Wechselwirkung mit anderen Zellmolekülen. Die entsprechenden Anweisungen übermitteln Kinasen, indem sie Proteinen einen Phosphatrest anheften. Der zugrundeliegende Reaktionsmechanismus scheint dabei bei allen Kinasen der gleiche zu sein. Mit Hilfe von Magnesium binden Kinasen ein ATP-Molekül und spalten davon einen Phosphatrest ab, den sie nachfolgend auf Proteine übertragen. Einigen wenigen Kinasen fehlt jedoch die Fähigkeit, das für die Reaktion notwendige Magnesium zu binden. Als so genannte Pseudokinasen wurden sie bisher wenig beachtet. Völlig zu unrecht, wie nun ein internationales Wissenschaftler-Team von der University of Texas (Dallas, USA), des Max-Planck-Instituts für biophysikalische Chemie (Göttingen) und des Deutschen Elektronen Synchrotrons (Hamburg) zeigt.

    Die Wissenschaftler fanden heraus, dass in der frühen Entwicklung des Nervensystems auch eine Pseudokinase aktiv zu sein scheint: das CASK-Protein. Die Pseudokinase wechselwirkt direkt mit dem Protein Neurexin, das für die Ausbildung der Synapsen zwischen Nervenzellen wichtig ist. Entfernt man bei Mäusen die CASK-Kinase, so sterben die Tiere bereits kurz nach der Geburt. Menschen bleiben ohne CASK in ihrer geistigen Entwicklung deutlich zurück und ihre Sehfähigkeit verkümmert. "Allerdings kann CASK kein Magnesium binden und ohne Magnesium funktionieren Kinasen nicht. Das passte für uns einfach nicht zusammen" erläutert Neurobiologe Konark Mukherjee, einer der Projektleiter. Daher bildeten die Forscher die Reaktion Schritt für Schritt im Reagenzglas nach. Dabei übertrug CASK ganz ohne Magnesium Phosphatreste auf Neurexin. Zugabe von Magnesium blockierte die Kinase sogar. Doch funktioniert die Pseudokinase auch in der Zelle? Tatsächlich konnten Mukherjee und seine Forscherkollegen die gleiche Kinase-Reaktion auch in lebenden Nervenzellen von Ratten nachweisen. Dass das Protein bei seinem Reaktionsmechanismus derart "improvisiert", hat biologisch durchaus seinen Sinn. "Zum Zeitpunkt der Synapsenbildung ist in der Nervenzelle nahezu kein Magnesium vorhanden. Magnesiumabhängige Kinasen wären unter diesen Bedingungen schlicht nicht funktionsfähig", sagt Mukherjee.

    Ein Protein - zwei Funktionen
    Die spannende Frage für die Wissenschaftler ist nun, wie eine Kinase auch ohne Magnesium funktionieren kann. Um diesen Mechanismus besser zu verstehen, arbeiteten Neurobiologen eng mit Strukturbiologen zusammen. Mit Hilfe der Röntgenkristallographie gelang es den Wissenschaftlern, die Struktur der CASK aufzuklären. "Anders als magnesiumabhängige Kinasen ist CASK praktisch ständig aktiv. Allerdings ist sie im Vergleich zu magnesiumabhängigen Kinasen sehr viel langsamer", fasst Markus Wahl vom Max-Planck-Institut für biophysikalische Chemie die neuen Erkenntnisse zusammen. Die geringe Aktivität kompensiert das Protein zumindest teilweise durch einen geschickten Trick: Neben der Kinase besitzt das Protein eine weitere Untereinheit, die aktiv Neurexin-Proteine rekrutiert und damit der Pseudokinase direkt zuarbeitet. "So kann die Kinase längere Zeit mit Neurexin-Proteinen wechselwirken und sie mit Phosphat versehen, obwohl sie langsam ist", erklärt Markus Wahl. Die Ergebnisse zeigen, dass der Reaktionsmechanismus von Kinasen facettenreicher ist als bisher angenommen. Auch andere Pseudokinasen, denen typische Eigenschaften von Kinasen fehlen, könnten sich zukünftig als "Spezialisten" entpuppen, die dort aktiv sind, wo normale Kinasen ihren Dienst versagen.

    Kontakt:
    Dr. Markus Wahl,
    Max-Planck-Institut für biophysikalische Chemie,
    Tel. +49 551 201-1046,
    Fax +49 551 201-1197,
    E-Mail: mwahl@gwdg.de

    Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit,
    Max-Planck-Institut für biophysikalische Chemie,
    Tel. +49 551 201-1304,
    Fax +49 551 201-1151,
    E-Mail: pr@mpibpc.mpg.de

    Sie finden diese Pressemeldung mit Bild zum Download in elektronischer Form unter www.mpibpc.mpg.de/groups/pr/PR/2008/08_07/


    More information:

    http://www.utsouthwestern.edu/utsw/cda/dept120915/files/144559.html - Department of Neuroscience, University of Texas Southwestern Medical Center
    http://www.mpibpc.mpg.de/groups/wahl/ - Die Abteilung Zelluläre Biochemie/Röntgenkristallographie, MPI für biophysikalische Chemie


    Images

    Ein Protein mit zwei Funktionen: Durch einen geschickten Trick kompensiert die CASK-Kinase ihre geringe Aktivität. Ein Teil des Proteins rekrutiert aktiv Neurexin-Proteine und platziert diese in unmittelbare Nähe zur Kinase.
    Ein Protein mit zwei Funktionen: Durch einen geschickten Trick kompensiert die CASK-Kinase ihre geri ...
    Wahl / MPIbpc
    None


    Criteria of this press release:
    Biology, Chemistry, Information technology, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).