idw - Informationsdienst
Wissenschaft
Welche Aufgaben erfüllen einzelne Nervenzellen und wie funktioniert ihre Zusammenarbeit? Diesen Fragen gehen die Wissenschaftler des Max-Planck-Instituts für Neurobiologie ausgerechnet in einem Gehirn nach, dessen Träger kleiner als ein Stecknadelkopf ist. Im Sehsystem der Fruchtfliege Drosophila können die Wissenschaftler nun genetische und physiologische Methoden kombinieren, wodurch die Forschung zum Verständnis der Funktion und Verschaltung von Nervenzellen bedeutend vorangetrieben wird.
Das menschliche Gehirn besteht aus rund hundert Milliarden Nervenzellen und vielen Billionen Zellkontakten. Jede noch so kleine Reaktion und Bewegung wird durch die Aktivität und das Zusammenspiel dieser Nervenzellen gesteuert. Herauszufinden wie das im Einzelnen funktioniert, ist eine der großen Herausforderungen der modernen Neurobiologie.
Fliegen: Meister der visuellen Verarbeitung
Ein erster Schritt zum Verständnis solcher komplexen Nervensysteme ist die detailierte Analyse eines etwas einfacher aufgebauten Systems. Je nach Fragestellung werden dafür unterschiedliche Modellorganismen herangezogen. So wird die Verarbeitung von optischen Informationen am Max-Planck-Institut für Neurobiologie zum Beispiel am Gehirn der Fliege erforscht. Das Gehirn der Fliege besitzt vergleichsweise wenige Nervenzellen, wodurch die Untersuchung ihrer Zusammenarbeit im Zellverbund deutlich erleichtert wird. Gleichzeitig sind die Nervenzellen der Fliege äußerst effizient in der Verarbeitung optischer Eindrücke. Eine Schmeißfliege würde zum Beispiel einen Kinofilm mit 100 Bildern pro Sekunde noch als Einzelbilder erkennen, während der Mensch die dunklen Pausen bereits ab 24 Bildern pro Sekunde nicht mehr wahrnimmt. Um diese visuellen Eindrücke zu verarbeiten braucht das Flugkontrollzentrum im Gehirn der Fliege gerade einmal 60 Nervenzellen. Selbst wenn die Fliege mit 10 km/h durch den Raum schießt, bleibt dem Zellverbund noch genügend Zeit um Ausweichmanöver einzuleiten. Ein Verständnis dieser leistungsstarken optischen Verarbeitung wird auch zur Klärung genereller Mechanismen und Zusammenhänge in anderen Systemen beitragen.
Durchbruch in der Fliegenforschung
Die Zellverschaltung im Fliegen-Sehsystem wurde bislang vor allem an der Schmeißfliege untersucht. Während in einer Art "Fliegenkino" Streifenmuster an den Augen der Fliege vorbeilaufen (siehe Abbildung), kann die elektrische Antwort einzelner Nervenzellen mit Hilfe von Elektroden gemessen werden. Auf diese Weise konnten auch die Vorhersagen mathematischer Modelle zum Bewegungssehen der Fliege bestätigt werden. "Was jedoch genau zwischen den einzelnen Zellen passiert wissen wir auch nach knapp 40 Jahren Forschung nicht", erklärt Maximilian Jösch, dem es nun gelungen ist, die elektrischen Reaktionen auch im optischen System der Fruchtfliege zu messen. Elektroden an einzelnen Nervenzellen im Fruchtfliegengehirn anzubringen erscheint eine aufwendige Sisyphus-Arbeit, denn eine ganze Fruchtfliege ist in etwa so groß wie das Gehirn einer Schmeißfliege! Jedoch öffnet die nun mögliche Arbeit mit der Drosophila Fruchtfliege ganz neue Türen: Im Gegensatz zur Schmeißfliege stehen für die Drosophila-Forschung eine Vielzahl genetischer Methoden bereit. So können zum Beispiel einzelne Nervenzellen durch ein fluoreszierendes Protein markiert und so besser untersucht werden. Noch spannender ist die Möglichkeit, einzelne Nervenzellen gezielt aus einem Schaltkreis herauszunehmen. So kann mithilfe temperatur-sensitiver Mutationen eine leichte Temperaturveränderung die Datenübertragung einer bestimmten Zelle verhindern; Die Auswirkungen auf den Informationsfluss im Zellverbund können nun mit Hilfe von Elektroden dokumentiert werden.
Besseres Verständnis von Gehirnfunktionen
"Bislang wurden in der Drosophila-Forschung bestimmte Zellen ausgeschaltet und dann beobachtet, wie sich diese Veränderungen im Verhalten der Tiere wiederspiegelt", erklärt Alexander Borst, in dessen Abteilung das Sehsystem der Fliege erforscht wird. "Was jedoch auf zellulärer Ebene Auslöser für die Verhaltensänderungen war, blieb ungeklärt." Solche zugrunde liegenden elektrischen Zusammenhänge zwischen einzelnen Nervenzellen kann die Schmeißfliegenforschung klären, der bislang jedoch die Möglichkeit zur gezielten Manipulation fehlte. Die neue Verbindung zwischen den physiologischen und genetischen Methoden der Schmeiß- und Fruchtfliegenforschung ist daher ein bedeutender Schritt nach vorn. Dies sollte nicht nur die Entschlüsselung des Bewegungssehens der Fliege erheblich vorantreiben, sondern auch unser allgemeines Verständnis der Funktion und Verschaltung von Nervenzellen verbessern.
http://www.neuro.mpg.de - Homepage des Max-Planck-Instituts für Neurobiologie
http://www.neuro.mpg.de/english/rd/scn/research/index.html - Homepage der Abteilung Neuronale Informationsverarbeitung
Eine einzelne Nervenzelle aus dem Flugkontrollzentrum der Fruchtfliege
© MPI für Neurobiologie / M. Jösch
None
Criteria of this press release:
Biology, Information technology, Medicine, Nutrition / healthcare / nursing
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).