idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/27/2008 11:06

Weizmann Institute Scientists Produce the First Smell Map

Batya Greenman Presse- und Öffentlichkeitsarbeit
Weizmann Institut

    Scientists at the Weizmann Institute of Science have created a 'smell map' based on the chemical properties of odor molecules. This map, which can predict the neural response to an unfamiliar smell, supports the idea that universal laws governing smell are hard-wired into the brain.

    Is the smell of almonds closer to that of roses or bananas? Weizmann Institute scientists have now answered that question (roses) by showing for the first time that smells can be mapped and the relative distance between various odors determined. Their findings, which appeared recently in Nature Methods, may help scientists to unravel the basic laws underlying our sense of smell, as well as potentially enabling odors to be digitized and transferred via computer in the future.

    We know the musical note do is farther from la than from re on a scale - not only because our ears tell us the distance is greater, but because their frequencies are farther apart. No such physical relationship had been discovered for smells, in part because odor molecules are much more difficult to pin down than sound frequencies. To create their map, the scientists began with 250 odorants and generated, for each, a list of around 1,600 chemical characteristics. From this dataset, the researchers, led by Rafi Haddad, a graduate student with Prof. Noam Sobel in the Neurobiology Department, and Prof. David Harel of the Computer Science and Applied Mathematics Department, together with their colleague Rehan Khan, created a multidimensional map of smells that revealed the distance between one odor molecule and another.

    Eventually, they pared the list of traits needed to situate an odor on the map down to around 40. They then checked to see whether the brain recognizes this map, similar to the way it recognizes musical scales. They reexamined numerous previously published studies that measured the neural response patterns to smells in a variety of lab animals - from fruit flies to rats - and found that across all the species, the closer any two smells were on the map, the more similar the neural patterns. The scientists also tested 70 new odors by predicting the neural patterns they would arouse and running comparisons with the unpublished results of olfaction experiments done at the University of Tokyo. They found that their predictions closely matched the experimental results.

    These findings lend support to the scientist's theory that, contrary to the commonly held view that smell is a subjective experience, there are universal laws governing the organization of smells, and these laws determine how our brains perceive them.

    Prof. Noam Sobel's research is supported by the Nella and Leon Benoziyo Center for Neurosciences; the J&R Foundation; and the Eisenberg Keefer Fund for New Scientists.

    Prof. David Harel's research is supported by the Arthur and Rochelle Belfer Institute of Mathematics and Computer Science; and the Henri Gutwirth Fund for Research. Prof. Harel is the incumbent of the William Sussman Professorial Chair.

    The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

    Weizmann Institute news releases are posted on the World Wide Web at
    http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.


    More information:

    http://wis-wander.weizmann.ac.il/site/en/weizman.asp?pi=371&doc_id=5129


    Images

    Criteria of this press release:
    Biology, Information technology, Mathematics, Physics / astronomy
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).