idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/21/2009 12:35

Auf den Spuren organischer Materie: Forscher finden zwei neue, hochkomplexe Moleküle im Weltraum

Barbara Abrell Referat Presse- und Öffentlichkeitsarbeit
Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Einem internationalen Team von Wissenschaftlern vom Max-Planck-Institut für Radioastronomie in Bonn, der Cornell-Universität (Ithaka/USA) und der Universität Köln haben zum ersten Mal zwei neue Moleküle im interstellaren Raum nachgewiesen, Äthylformiat und n-Propylzyanid. Computermodelle zeigen, dass vermutlich noch komplexere organische Moleküle vorhanden sein müssen - darunter auch noch nicht identifizierte Aminosäuren, die Grundbausteine des Lebens. Die Forschungsergebnisse werden am Dienstag, 21. April 2009 auf der "Europäischen Woche der Astronomie und Raumfahrt" an der Universität von Hertfordshire/Großbritannien präsentiert.

    Die Wissenschaftler nutzten das IRAM-30m-Teleskop in Spanien zum Nachweis der Radiostrahlung von Molekülen im Sternentstehungsgebiet Sagittarius B2 in der Nähe des Zentrums unserer Milchstraße. Die beiden neuen Moleküle wurden in einer heißen dichten Gaswolke aufgefunden, die unter dem Namen "Large Molecule Heimat" bekanntgeworden ist und einen sehr leuchtkräftigen gerade erst entstandenen Stern in ihrem Inneren enthält. In dieser Gaswolke konnte bereits eine ganze Reihe von unterschiedlichen großen organischen Molekülen nachgewiesen werden, darunter Alkohole, Aldehyde und Säuren. Die beiden neugefundenen Moleküle, Äthylformiat und n-Propylzyanid, repräsentieren zwei unterschiedliche Klassen von Molekülen - Ester und Alkylzyanide - und stellen jeweils die komplexesten bisher im Weltraum entdeckten Vertreter ihrer Klasse dar.

    Atome und Moleküle senden Strahlung bei ganz speziellen Frequenzen aus, die als charakteristische "Linien" im elektromagnetischen Spektrum einer astronomischen Quelle erscheinen. Die Entschlüsselung der Signatur eines bestimmten Moleküls im Spektrum ist dabei vergleichbar mit der Identifikation eines Menschen anhand seiner Fingerabdrücke. "Das Problem bei der Suche nach komplexen Molekülen liegt darin, dass die am besten geeigneten astronomischen Quellen so viele unterschiedliche Moleküle enthalten, dass ihre "Fingerabdrücke" überlappen und nur sehr schwer zu entwirren sind", sagt Arnaud Belloche, Wissenschaftler am Max-Planck-Institut für Radioastronomie. "Die größeren und komplexeren Moleküle sind sogar noch schwieriger zu identifizieren, da ihre "Fingerabdrücke" kaum sichtbar werden: Ihre Strahlung wird über eine viel größere Anzahl von Linien verteilt, die alle viel schwächer herauskommen", ergänzt Holger Müller von der Universität Köln. Von den insgesamt 3700 Spektrallinien, die mit dem IRAM-Teleskop gefunden wurden, konnte das Forschungsteam 36 Linien mit den beiden neuen Molekülen identifizieren.

    Die Forscher haben anschließend Computer-Modellrechnungen dafür eingesetzt, die chemischen Prozesse zu verstehen, die zur Bildung solcher Moleküle im Weltraum führen. Chemische Reaktionen erfolgen als Resultat von Kollisionen zwischen Gaspartikeln. Ebenso befinden sich Staubkörner als Bestandteile im interstellaren Gas, auf deren Oberfläche Reaktionen zwischen einzelnen Atomen stattfinden können, die Moleküle bilden. Als Ergebnis davon bauen sich um die Staubkörner dicke Eisschichten auf. Sie bestehen hauptsächlich aus Wasser, enthalten aber auch Einschlüsse einer Reihe von einfachen organischen Molekülen wie zum Beispiel Methanol, dem einfachsten Alkohol.

    "Aber die wirklich großen Moleküle scheinen sich nicht auf diese Weise, nämlich Atom für Atom, aufzubauen", sagt Robin Garrod, ein Astrochemiker an der Cornell-Universität. Stattdessen lassen die Computermodelle vermuten, dass die komplexeren Moleküle abschnittsweise aufgebaut werden. Dabei kommen vorgefertigte Teilabschnitte zum Einsatz, die durch Moleküle bereitgestellt werden, die schon auf den Staubkörnern vorhanden sind. Die Computermodelle zeigen, dass diese Abschnitte oder "funktionalen Gruppen" sich sehr wirksam miteinander verbinden können, um so ganze "Molekülketten" in einer Serie von kurzen Schritten zusammenzubauen. Die beiden neu entdeckten Moleküle sind vermutlich auf diese Art entstanden.

    "Es gibt anscheinend keine Begrenzung für die Größe der Moleküle, die durch diesen Prozess erzeugt werden können - wir erwarten sogar noch komplexere Moleküle, wenn wir sie überhaupt nur entdecken können." so Garrod. Karl Menten, Direktor am Max-Planck-Institut für Radioastronomie und ebenfalls Mitglied des Forschungsteams, erwartet solche Entdeckungen bereits in naher Zukunft. "Was wir im Moment machen, ist ein bisschen so wie die Suche nach der Stecknadel im Heuhaufen.

    Zukünftige Forschungsinstrumente wie das Atacama Large Millimeter Array werden noch effizientere Beobachtungsprogramme möglich machen, mit denen weitere organische Moleküle im interstellaren Raum gefunden werden können." Vielleicht sogar die Entdeckung von Aminosäuren, die für die Erzeugung von Proteinen benötigt werden und damit unverzichtbar sind für die Entstehung des Lebens auf der Erde.

    Nach der einfachsten Aminosäure, Glyzin, wurde bereits wiederholt im Weltraum gesucht; sie konnte allerdings bis jetzt noch nicht nachgewiesen werden. Allerdings sind beide hier beschriebenen neu entdeckten Moleküle von Größe und Komplexität her durchaus mit Glyzin vergleichbar.

    Originalveröffentlichung:

    A. Belloche, R. T. Garrod, H. S. P. Müller, K. M. Menten, C. Comito, und P. Schilke
    Increased complexity in interstellar chemistry: detection and chemical modeling of ethyl formate and n-propyl cyanide in Sgr B2(N)
    Astronomy & Astrophysics (im Druck), [DOI: 10.1051/0004-6361/200811550]

    Weitere Informationen erhalten Sie von:

    Dr. Arnaud Belloche
    Max-Planck-Institut für Radioastronomie, Bonn
    Tel.: +49 228 525-376
    Fax: +49 228 525-229
    E-Mail: belloche@mpifr.de

    Dr. Robin Garrod
    Dept. of Astronomy, Cornell University, USA.
    Tel.: +1 607 255-8967
    Fax: +1 607 255-5875
    E-Mail: rgarrod@stro.cornell.edu

    Dr. Norbert Junkes, Öffentlichkeitsarbeit
    Max-Planck-Institut für Radioastronomie, Bonn
    Tel.: +49 228 525-399
    Fax: +49 228 525-438
    E-Mail: njunkes@mifr.de


    More information:

    http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2008/... - Verwandter einer Aminosäure im All entdeckt


    Images

    Die beiden im interstellaren Raum neu entdeckten hochkomplexen organischen Moleküle (links: Äthylformiat , rechts: n-Propylzyanid). Die Farbkodierung der atomaren Bestandteile der Moleküle ist wie folgt: Wasserstoff (H): weiß, Kohlenstoff (C): grau, Sauerstoff (O): rot und Stickstoff (N): blau.
    Die beiden im interstellaren Raum neu entdeckten hochkomplexen organischen Moleküle (links: Äthylfor ...
    Oliver Baum, Universität Köln
    None

    Das IRAM-30m-Radioteleskop auf dem Pico Veleta in Südspanien. Millimeterwellenbeobachtungen mit diesem Teleskop führten zur Entdeckung der beiden neuen Moleküle Äthylformiat und n-Propylzyanid im interstellaren Raum.
    Das IRAM-30m-Radioteleskop auf dem Pico Veleta in Südspanien. Millimeterwellenbeobachtungen mit dies ...
    IRAM
    None


    Criteria of this press release:
    Physics / astronomy
    transregional, national
    Research results, Scientific conferences
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).