idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/13/2009 19:00

Was Nanodrähte so anziehend macht

Dr. Ute Schönfelder Referat Öffentlichkeitsarbeit
Friedrich-Schiller-Universität Jena

    Festkörperphysiker der Universität Jena weisen Halbleiter-Nanodrähte mit magnetischen Eigenschaften eindeutig nach / Publikation erscheint heute in "Nature Nanotechnology"

    SPERRFRIST: Montag (13. Juli) 19 UHR (MESZ)

    Jena (13.07.09) Die "Anziehungskraft" winzigster Nanodrähte beruht für Prof. Dr. Carsten Ronning nicht nur auf seinen besonderen wissenschaftlichen Interessen. Dem Physiker von der Friedrich-Schiller-Universität Jena, zu dessen Forschungsschwerpunkten Halbleiter-Nanodrähte gehören, ist es jetzt erstmals gelungen, eindeutig nachzuweisen, dass Kobalt-dotierte Nanodrähte aus Zinkoxid intrinsische ferromagnetische Eigenschaften besitzen. "Im Prinzip funktionieren diese wie winzige Stabmagneten", erläutert der Inhaber des Lehrstuhls für Festkörperphysik. Seine Forschungsergebnisse, die in enger Zusammenarbeit mit Kollegen der Chinese University of Hongkong entstanden sind, werden in der aktuellen Online Ausgabe der renommierten Fachzeitschrift "Nature Nanotechnology" veröffentlicht.

    Die Herstellung magnetischer Halbleiter-Nanodrähte ist bisher reine Grundlagenforschung, wie Ronning betont. Doch mittelfristig "können wir damit möglicherweise helfen, die Tür zur Spintronik aufzustoßen." Mit "Spintronik" wird ein neues Gebiet der Halbleiterphysik bezeichnet: Während die traditionelle Halbleiterelektronik auf den elektrischen Ladungen der Elektronen beruht, nutzt die Spintronik zusätzlich den Spin - den Eigen-Drehimpuls - der Elektronen aus. "Dieser Impuls kann in zwei verschiedenen Richtungen auftreten, woraus ein magnetisches Moment resultiert", erläutert Prof. Ronning.

    Diese Neuentwicklung hätte handfeste Vorteile. So benötigen gängige elektronische Bauelemente etwa 10.000 bis 100.000 Elektronen für einen einzelnen Schaltvorgang. Halbleiterbauelemente, die nur den Spin von Elektronen schalten, kommen mit einem einzelnen Elektron aus, um die notwendige Information zu transportieren. "Das bedeutet, dass Spintronik-Halbleiter sehr viel schneller schalten könnten, als herkömmliche elektronische Bauelemente", so Ronning. Zudem würden diese mit einem Bruchteil an Strom auskommen.

    Voraussetzung für die praktische Weiterentwicklung der Spintronik ist jedoch, dass sich Halbleiter mit intrinsischen ferromagnetischen Eigenschaften überhaupt herstellen lassen. Daran wird seit rund einem Jahrzehnt weltweit intensiv geforscht - bislang jedoch mit mäßigem Erfolg. "Bisher gab es keine Methode, die eindeutig den intrinsischen Ferromagnetismus nachweisen konnte." Dank der Jenaer Physiker und ihrer chinesischen Kollegen ist man nun einen entscheidenden Schritt weiter.

    Für die vorliegende Arbeit hat Prof. Ronning und sein Team das Jenaer Knowhow in der Herstellung von Halbleiter-Nanostrukturen und deren optischer Charakterisierung genutzt und Zinkoxid-Drähte dotiert. Diese wurden dann von den chinesischen Kollegen um Prof. Dr. Quan Li, eine ausgewiesene Expertin im Bereich Elektronenmikroskopie, auf ihre magnetischen Eigenschaften untersucht. "Wir haben festgestellt, dass die Kobalt-Dotierung den Nanodrähten intrinsische ferromagnetische Eigenschaften verleiht, während Eisen das nicht kann", kommentiert Prof. Li das überraschende Ergebnis. Weitere Untersuchungen sollen nun klären, worauf diese Unterschiede beruhen.

    Die Originalpublikation "Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures" ist ab heute (19 Uhr) abrufbar unter: http://www.nature.com/doifinder/10.1038/nnano.2009.181

    Kontakt:
    Prof. Dr. Carsten Ronning
    Institut für Festkörperphysik der Friedrich-Schiller-Universität Jena
    Helmholtzweg 3, 07743 Jena
    Tel.: 03641 / 947300
    E-Mail: carsten.ronning@uni-jena.de


    More information:

    http://www.nano.uni-jena.de/
    http://www.uni-jena.de


    Images

    Prof. Dr. Carsten Ronning von der Jenaer Universität  konnte erstmals zweifelsfrei zeigen, dass Nanodrähte magnetisch sein können.
    Prof. Dr. Carsten Ronning von der Jenaer Universität konnte erstmals zweifelsfrei zeigen, dass Nano ...
    Foto: Peter Scheere/FSU
    None


    Criteria of this press release:
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).